一.cache_t数据结构分析
- 类的底层结构有 isa,superclass,cache,bits, 现在来结节一下cache_t的内部结构
struct cache_t {
private:
explicit_atomic _bucketsAndMaybeMask; // 8
union {
struct {
explicit_atomic _maybeMask; // 4
#if __LP64__
uint16_t _flags; // 2
#endif
uint16_t _occupied; // 2
};
explicit_atomic _originalPreoptCache; // 8
};
- 在cache_t的结构体成员中发现它 是一个联合体,内存大小是16
- 发现_bucketsAndMaybeMask 存储的是buckets 和Mask
struct bucket_t {
private:
// IMP-first is better for arm64e ptrauth and no worse for arm64.
// SEL-first is better for armv7* and i386 and x86_64.
#if __arm64__
explicit_atomic _imp;
explicit_atomic _sel;
#else
explicit_atomic _sel;
explicit_atomic _imp;
#endif
-
结合上面源码分析得到cache_t 的内部数据结构图
验证上面cache_t的内存结构是否正确????下面lldb验证
LGPerson *p = [LGPerson alloc];
[p saySomething];
(lldb) p/x LGPerson.class
(Class) $0 = 0x00000001000084c0 LGPerson
(lldb) p/x 0x00000001000084d0
(long) $1 = 0x00000001000084d0
(lldb) p/x (cache_t *)0x00000001000084d0
(cache_t *) $2 = 0x00000001000084d0
(lldb) p *$2
(cache_t) $3 = {
_bucketsAndMaybeMask = {
std::__1::atomic = {
Value = 4311773328
}
}
= {
= {
_maybeMask = {
std::__1::atomic = {
Value = 3
}
}
_flags = 32808
_occupied = 1
}
_originalPreoptCache = {
std::__1::atomic = {
Value = 0x0001802800000003
}
}
}
}
(lldb) p $2.buckets()
(bucket_t *) $4 = 0x0000000101007090
Fix-it applied, fixed expression was:
$2->buckets()
(lldb) p $4[1]
(bucket_t) $5 = {
_sel = {
std::__1::atomic = "" {
Value = ""
}
}
_imp = {
std::__1::atomic = {
Value = 48832
}
}
}
(lldb) p $5.sel()
(SEL) $6 = "saySomething"
(lldb) p $5.imp(nil,LGPerson.class)
(IMP) $7 = 0x0000000100003a00 (KCObjcBuild`-[LGPerson saySomething])
struct bucket_t *cache_t::buckets() const
{
uintptr_t addr = _bucketsAndMaybeMask.load(memory_order_relaxed);
return (bucket_t *)(addr & bucketsMask);
}
- 总结:1.cache_t 里面存储的是 sel 和ipm
2.cache_t存储方式是哈希表链的方式
3.bucket_t 获取是根据地址平移获取
二.分析cache_t调用流程分析(脱离源码分析)
@interface LGPerson : NSObject
- (void)say1;
- (void)say2;
- (void)say3;
- (void)say4;
- (void)say5;
- (void)say6;
- (void)say7;
int main(int argc, const char * argv[]) {
@autoreleasepool {
LGPerson *p = [LGPerson alloc];
Class pClass = p.class; // objc_clas
[p say1];
[p say2];
[p say3];
[p say4];
[p say5];
[p say6];
[p say7];
struct kc_objc_class *kc_class = (__bridge struct kc_objc_class *)(pClass);
NSLog(@"%hu - %u",kc_class->cache._occupied,kc_class->cache._maybeMask);
for (mask_t i = 0; icache._maybeMask; i++) {
struct kc_bucket_t bucket = kc_class->cache._bukets[i];
NSLog(@"%@ - %pf",NSStringFromSelector(bucket._sel),bucket._imp);
}
NSLog(@"Hello, World!");
}
- lldb 打印如下:
2021-06-25 10:08:50.837705+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say1]
2021-06-25 10:08:50.838251+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say2]
2021-06-25 10:08:50.838414+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say3]
2021-06-25 10:08:50.838470+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say4]
2021-06-25 10:08:50.838513+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say5]
2021-06-25 10:08:50.838555+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say6]
2021-06-25 10:08:50.838599+0800 003-cache_t脱离源码环境分析[1354:32771] LGPerson say : -[LGPerson say7]
2021-06-25 10:08:50.838641+0800 003-cache_t脱离源码环境分析[1354:32771] 5 - 7
2021-06-25 10:08:50.838764+0800 003-cache_t脱离源码环境分析[1354:32771] say4 - 0xb850f
2021-06-25 10:08:50.838839+0800 003-cache_t脱离源码环境分析[1354:32771] say6 - 0xb8b0f
2021-06-25 10:08:50.838897+0800 003-cache_t脱离源码环境分析[1354:32771] say3 - 0xb800f
2021-06-25 10:08:50.838939+0800 003-cache_t脱离源码环境分析[1354:32771] (null) - 0x0f
2021-06-25 10:08:50.848600+0800 003-cache_t脱离源码环境分析[1354:32771] say5 - 0xb860f
2021-06-25 10:08:50.848688+0800 003-cache_t脱离源码环境分析[1354:32771] (null) - 0x0f
2021-06-25 10:08:50.848739+0800 003-cache_t脱离源码环境分析[1354:32771] say7 - 0xb8c0f
- 思考say1 say2 去哪里了?看下源码:
void cache_t::insert(SEL sel, IMP imp, id receiver)
{
runtimeLock.assertLocked();
// Never cache before +initialize is done
if (slowpath(!cls()->isInitialized())) {
return;
}
if (isConstantOptimizedCache()) {
_objc_fatal("cache_t::insert() called with a preoptimized cache for %s",
cls()->nameForLogging());
}
#if DEBUG_TASK_THREADS
return _collecting_in_critical();
#else
#if CONFIG_USE_CACHE_LOCK
mutex_locker_t lock(cacheUpdateLock);
#endif
ASSERT(sel != 0 && cls()->isInitialized());
// Use the cache as-is if until we exceed our expected fill ratio.
mask_t newOccupied = occupied() + 1; // 1+1
unsigned oldCapacity = capacity(), capacity = oldCapacity;
if (slowpath(isConstantEmptyCache())) {
// Cache is read-only. Replace it.
if (!capacity) capacity = INIT_CACHE_SIZE;//4
reallocate(oldCapacity, capacity, /* freeOld */false);
}
else if (fastpath(newOccupied + CACHE_END_MARKER <= cache_fill_ratio(capacity))) {
// Cache is less than 3/4 or 7/8 full. Use it as-is.
}
#if CACHE_ALLOW_FULL_UTILIZATION
else if (capacity <= FULL_UTILIZATION_CACHE_SIZE && newOccupied + CACHE_END_MARKER <= capacity) {
// Allow 100% cache utilization for small buckets. Use it as-is.
}
#endif
else {// 4*2 = 8
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
reallocate(oldCapacity, capacity, true);
}
bucket_t *b = buckets();
mask_t m = capacity - 1; // 4-1=3
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot.
do {
if (fastpath(b[i].sel() == 0)) {
incrementOccupied();
b[i].set(b, sel, imp, cls());
return;
}
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
} while (fastpath((i = cache_next(i, m)) != begin));
bad_cache(receiver, (SEL)sel);
#endif // !DEBUG_TASK_THREADS
}
扩容规则 Cache is less than 3/4 or 7/8 full
根据源码解读 buckets 的默认值是 4 当容量达到4分之3时扩容 为 capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE; 8;
因为苹果遵循越新越好的原则,在内存处理原来 开辟4的容器抛弃 重新开辟8的容器 所有 里面是 say1 say2 内存回收了
-
buckets 存储是无序的
结合上图可以得知,当buckets开始扩容时,会把原来的数据回收,从新生成一个容器
*由于存在一个默认的0x1,所以在这里是 <=3/4 或者 <=7/8 扩容。等号的由来就是由于存在0x1这个默认值。这个时候我们自己真实缓存的sel只有两个。在插入第三个前进行了扩容。-
根据上面分析得到cache 的整个流程图
补充在cache 插入方法查看函数调用栈
(lldb) sbt
frame #0 : 0x1002e2a7b libobjc.A.dylib`cache_t::insert(objc_selector*, void (*)(), objc_object*) + 635
frame #1 : 0x10030064a libobjc.A.dylib`log_and_fill_cache(objc_class*, void (*)(), objc_selector*, objc_object*, objc_class*) + 202
frame #2 : 0x1002ff1d2 libobjc.A.dylib`lookUpImpOrForward + 802
frame #3 : 0x1002d7a9b libobjc.A.dylib`_objc_msgSend_uncached + 75
frame #4 : 0x7fff6881ccd8 libsystem_trace.dylib`os_log_shim_with_CFString + 69
frame #5 : 0x7fff2e55aae4 CoreFoundation`_CFLogvEx3 + 189
frame #6 : 0x7fff30cceee4 Foundation`_NSLogv + 102
frame #7 : 0x7fff30bccef2 Foundation`NSLog + 132
frame #8 : 0x100003658 KCObjcBuild`-[LGPerson saySomething] + 40
frame #9 : 0x100003390 KCObjcBuild`main + 64
- 发现调用循序是 _objc_msgSend_uncached -> log_and_fill_cache - >cache_t::insert 也是发消息的法式!msgSend 后面文章继续跟新