- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- RNN及其变体
豫儿啊~
lstm人工智能rnn
RNN及其变体RNN模型定义循环神经网络:一般接受的一序列进行输入,输出也是一个序列作用和应用场景:RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成RNN模型的分类根据输入与输出结构NVsN:输入和输出等长,应用场景:对联生成;词性标注;NERNVs1:输入N,输出为单值,应用场景:文本分类1VsN:输出是一个,输出为N,应用场景:图片文本生成NVsM:输入和输出不等长,应用场景
- 【Python机器学习】NLP概述——深度处理
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能机器人
自然语言处理流水线的各个阶段可以看作是层,就像是前馈神经网络中的层一样。深度学习就是通过在传统的两层机器学习模型架构(特征提取+建模)中添加额外的处理层来创建更复杂的模型和行为。上图中,前四层对应于聊天机器人流水线中的前两个阶段(特征提取和特征分析)。例如,词性标注(POS标注)是在聊天机器人流水线的分析阶段生成特征的一种方法。POS标签由默认的SpaCY流水线自动生成,该流水线包括上图中所有的前
- 自然语言处理NLP之中文分词和词性标注
陈敬雷-充电了么-CEO兼CTO
自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录一、Python第三方库jieba(中文分词、词性标注)特点二、jieba中文分词的安装关键词抽取基于TF-IDF算法TF-IDF原理介绍基于TextRank算法的关键词抽取textRank算法原理介绍总结一、Python第三方库jieba
- 小琳AI课堂:Llama——NLP界的多面手
小琳ai
小琳AI课堂人工智能llama自然语言处理
Llama:NLP界的多面手引言:大家好,这里是小琳AI课堂。今天,我们要探索的是自然语言处理(NLP)领域的一位明星——Llama。Llama,由MetaAI(原FacebookAI)开发,以其轻量级、高效和易用性著称,是处理快速、灵活文本需求的理想选择。核心功能:Llama提供了一系列NLP工具,包括词性标注、句法分析、命名实体识别等,帮助开发者深入理解和处理自然语言文本。语言支持:Llama
- 合槽位填充技术的问答系统构建步骤及其所需的技术和工具
Komorebi_9999
知识图谱问答系统自然语言处理
下面是结合槽位填充技术的问答系统构建步骤及其所需的技术和工具:1.知识图谱构建技术/工具:Neo4j或ArangoDB(图数据库)RDF2Neo(将RDF数据导入Neo4j的工具)D2RQ(将关系型数据库转化为SPARQL端点)模型算法:资源描述框架(RDF)Web本体语言(OWL)2.自然语言处理(NLP)技术/工具:spaCy(用于文本处理、词性标注、命名实体识别等)NLTK或HuggingF
- jieba安装和使用教程
Cachel wood
自然语言处理nlpwindows开发语言jieba知识图谱neo4j人工智能python
文章目录jieba安装自定义词典关键词提取词性标注jieba安装pipinstalljiebajieba常用的三种模式:精确模式,试图将句子最精确地切开,适合文本分析;全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。可使用jieba.cut和jieba.cut_for_search方法
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
人工智能自然语言处理数据挖掘
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- 自然语言处理N天-AllenNLP学习(实现简单的词性标注)
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg1.前言在了解了Transformer之后,这个模型是否可用呢?现在遇到的问题是,目前试了几个模型(LSTM、GRU、Transformer),但是还没有放入实践中,具体应该怎么操作?有一篇帖子总结了一下学习处理NLP问题中间的坑。NLP数据预处理要比CV的麻烦很多。去除停用词,建立词典,加载各种预训练词向量,Sentence->Wo
- NLP学习(二)—中文分词技术
陈易德
NLP自然语言处理
本次代码的环境:运行平台:WindowsPython版本:Python3.xIDE:PyCharm一、前言这篇内容主要是讲解的中文分词,词是一个完整语义的最小单位。分词技术是词性标注、命名实体识别、关键词提取等技术的基础。本篇博文会主要介绍基于规则的分词、基于统计的分词、jieba库等内容。一直在说中文分词,那中文分词和欧语系的分词有什么不同或者说是难点的呢?主要难点在于汉语结构与印欧体系语种差异
- python nltk中文_NLTK中文词性标注
weixin_39560064
pythonnltk中文
1.说明学习自然语言处理,一定会参考NLTK,主要是学习它的思路,从设计地角度看看能做什么.其本质就是把语言看成字符串,字符串组,字符串集,寻找其间规律.NLTK是多语言支持的,但目前网上的例程几乎没有用NLTK处理中文的,其实可以做。比如标注功能,它自身提供了带标注的中文语库(繁体语料库sinica_treebank).下面来看看怎样通过数据训练来实现中文词性自动标注.可以利用它来标注中本,也可
- 【自然语言处理-工具篇】spaCy<1>--介绍及安装指南
大表哥汽车人
人工智能大语言模型学习笔记自然语言处理人工智能
目录前言安装指南pipcondaspaCy升级总结前言spaCy是一个开源的自然语言处理库,用于处理和分析文本数据。它提供了许多功能,包括分词、词性标注
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
汀、人工智能
人工智能知识图谱LSTM分词算法信息抽取词性标注NLP
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- Python-Flair 实现英文命名实体识别(NER)
小小晓晓阳
NLPpython开发语言nlpNER
一、什么是Flair库?Flair是由ZalandoResearch开发的一个简单的自然语言处理(NLP)库。Flair的框架直接构建在PyTorch上,PyTorch是最好的深度学习框架之一。ZalandoResearch团队还为以下NLP任务发布了几个预先训练的模型:1.名称-实体识别(NER):它可以识别单词是代表文本中的人,位置还是名称。2.词性标注(PoS):将给定文本中的所有单词标记为
- 用Stanford corenlp进行词性标注时遇到的问题
20c5bd2d61e1
因为毕业设计的需要,得对中英文双语语料进行词性标注了,中文我就用了jieba,英文的没找到别的工具,用了Stanfordcorenlp了,首先用一片短文试运行了一下,运行没问题,但是用我自己的语料(十万行),就提示错误raiseJSONDecodeError("Expectingvalue",s,err.value)fromNonejson.decoder.JSONDecodeError:Expe
- NLP自然语言处理的基本语言任务介绍
人生万事须自为,跬步江山即寥廓。
机器学习人工智能自然语言处理人工智能机器学习
自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学、人工智能和语言学领域的一个分支,它致力于使计算机能够理解、解释和生成人类语言。NLP的基本任务包括以下几个方面:1.分词(Tokenization):将文本分割成单词、短语或其他有意义的元素(称为tokens)。分词是许多NLP任务的第一步。2.词性标注(Part-of-SpeechTagging):为文本中的
- Python 中 jieba 库
SteveKenny
pythonpython开发语言后端
文章目录jieba库一、简介1、是什么2、安装二、基本使用1、三种模式2、使用语法2.1对词组的基本操作2.2关键字提取2.3词性标注2.4返回词语在原文的起止位置jieba库一、简介1、是什么(1)jieba是优秀的中文分词第三方库中文文本需要通过分词获得单个的词语jieba是优秀的中文分词第三方库,需要额外安装jieba库提供三种分词模式,最简单只需掌握一个函数(2)jieba分词的原理jie
- 基于BERT Adapter的词汇增强型中文序列标注模型
NLP论文解读
©原创作者|疯狂的Max论文LexiconEnhancedChineseSequenceLabellingUsingBERTAdapter解读01背景与动机近年来,多项研究致力于将词汇信息融入中文预训练模型中以提升命名实体识别、分词和词性标注等序列标注类任务的效果。但其中的大多数方法为都是直接在预训练模型中加入浅层的且随机初始化的序列层,其局限性在于不能在BERT模型的底部的层中加入词汇信息,导致
- 自然语言处理系列二十二》词性标注》词性标注原理》词性介绍
陈敬雷-充电了么-CEO兼CTO
大数据算法人工智能算法分布式大数据编程语言机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列二十二词性标注词性介绍总结自然语言处理系列二十二词性标注词性标注(Part-Of-Speechtagging,POStagging)也被称为语法标注(grammaticaltagging)或词类消疑(word-categor
- 隐马尔可夫模型系列——(六)总结与展望
飞影铠甲
人工智能机器学习数学建模
一、总结:隐马尔可夫模型(HiddenMarkovModel,HMM)是一种用于建模序列数据的统计模型,在语音识别、自然语言处理、金融领域等多个领域都有广泛的应用。其优势包括可以处理动态序列数据、具有一定的鲁棒性、可以灵活地建模不同状态之间的转移关系等。在语音识别中,HMM可以帮助解决噪声和失真对识别准确率的影响;在自然语言处理中,HMM可以用于词性标注、语法分析等任务;在金融领域,HMM可以帮助
- 自然语言处理(NLP)技术使用
数据科学与艺术的贺公子
自然语言处理人工智能
自然语言处理(NLP)技术使用以下是一些自然语言处理(NLP)技术的例子:以上只是一些NLP技术的例子,还有许多其他的技术和应用,如文本分类、文本生成、问答系统等。NLP技术的发展正逐渐改变人们与计算机之间的交互方式,并提供了许多新的商业和研究机会。以下是一些自然语言处理(NLP)技术的例子:词性标注:这个技术可以自动识别文本中的每个单词的词性,例如名词、动词、形容词等。词性标注在自动翻译、文本摘
- kashgari的Python项目-NLP框架(实体识别(NER)、词性标注(PoS)和文本分类任务)
javastart
自然语言pythonkeras深度学习
简单而强大的NLP框架,在5分钟内为命名实体识别(NER)、词性标注(PoS)和文本分类任务构建最新模型喀什是:人性化。喀什噶尔的代码是直截了当的,有很好的文档和测试,这使得它非常容易理解和修改。功能强大且简单。喀什允许您将最先进的自然语言处理(nlp)模型应用于文本,如命名实体识别(ner)、词性标注(pos)和分类。keras基础。Kashgare直接构建在Keras上,使您可以轻松地训练模型
- 自然语言处理-文本标注
白云如幻
PyTorch深度学习代码笔记自然语言处理人工智能
文本标注现在让我们考虑词元级任务,比如文本标注(texttagging),其中每个词元都被分配了一个标签。在文本标注任务中,词性标注为每个单词分配词性标记(例如,形容词和限定词)。根据单词在句子中的作用。如,在Penn树库II标注集中,句子“JohnSmith‘scarisnew”应该被标记为“NNP(名词,专有单数)NNPPOS(所有格结尾)NN(名词,单数或质量)VB(动词,基本形式)JJ(形
- 2022-04-02
跨象乘云
自然语言处理实验演示-20.单复数变换TextBlob是一个用Python编写的开源的文本处理库,属于NLTK的扩展库。它可以用来执行很多自然语言处理的任务,比如:词性标注,名词性成分提取,情感分析,文本翻译等等。相对与NLTK,对于小型NLP项目TextBlob是一个更为理想的选择。在本实验中,我们将使用TextBlob进行单词的单复数变换,操作过程中,你能初步感受到TextBlob操作的便捷性
- HMM隐马尔可夫模型和维特比算法
Y·Not·Try
NLPHMM维特比算法自然语言处理算法机器学习
前言一、HMM的构成二、HMM的基本假设1.齐次马尔可夫假设2.观测独立假设3.参数不变性假设三、HMM的参数学习(监督学习)四、参数学习的代码思路五、维特比算法六、维特比算法代码思路总结前言隐马尔可夫模型是关于时序的概率图模型,属于生成模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐马尔可夫模型常用来处理诸如分词,词性标注,命名
- (二)NLP-中文分词-HMM-维特比算法
淡定的炮仗
NLPnlp
中文分词一、词词是一个完整语义的最小单位。分词技术是词性标注、命名实体识别、关键词提取等技术的基础。1中文分词和欧语系的分词有什么不同或者说是难点的呢?主要难点在于汉语结构与印欧体系语种差异甚大,对词的构成边界方面很难进行界定。比如,在英语中,单词本身就是“词”的表达,一篇英文文章就是“单词”加分隔符(空格)来表示的,而在汉语中,词以字为基本单位的,但是一篇文章的语义表达却仍然是以词来划分的。因此
- 自然语言处理--基于HMM+维特比算法的词性标注
Java之弟
自然语言处理自然语言处理算法人工智能
自然语言处理作业2--基于HMM+维特比算法的词性标注一、理论描述词性标注是一种自然语言处理技术,用于识别文本中每个词的词性,例如名词、动词、形容词等;词性标注也被称为语法标注或词类消疑,是语料库语言学中将语料库内单词的词性按其含义和上下文内容进行标记的文本数据处理技术;词性标注可以由人工或特定算法完成,使用机器学习方法实现词性标注是自然语言处理的研究内容。常见的词性标注算法包括隐马尔可夫模型、条
- NLP学习(1)
Tang_Genie
一NER任务的认识参考:https://www.6aiq.com/article/15938787526711.Overiew/Introduction文本数据结构化是NLP最有价值的任务。一个句子中,命名实体更受到人们的关注。中文分词任务关注句子中的词汇之间的边界,词性标注关注这些被分出边界的词在词法上的类型。而命名实体识别关注的是命名实体的边界。它的粒度通常比中文分词要粗——是多个单词构成的复
- NLP深入学习(二):nltk 工具包介绍
Smaller、FL
NLP自然语言处理学习人工智能nlp中文分词
文章目录0.引言1.什么是NLTK1.1主要特点1.2NLTK使用示例2.句子和单词标记化(tokenization)3.移除停用词(Stopwords)4.词干提取5.词性标注6.命名实体识别7.理解同义词集8.频率分布9.情绪分析10.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》1.什么是NLTKNLTK(NaturalLanguageToolkit)是一个强大的Pyt
- NLP深入学习(一):jieba 工具包介绍
Smaller、FL
NLP自然语言处理学习nlp
文章目录1.jieba介绍2.分词3.添加自定义词典3.1添加词典3.2调整词典4.关键词提取4.1基于TF-IDF算法的关键词抽取4.2基于TextRank算法的关键词抽取5.词性标注6.参考1.jieba介绍jieba(结巴)是一款用于中文文本处理的开源分词工具。它是基于Python编写的,具有简单易用、高效准确的特点,成为处理中文文本分词任务中常用的工具之一。jieba的github点击这里
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri