%_________________________________________________________________________%
clc;
clear;
close all;
warning off;
% Change these details with respect to your problem%%%%%%%%%%%%%%
% This program solves the economic dispatch with Bmn coefficients by MOALO
% Algorithm
% The data matrix should have 5 columns of fuel cost coefficients and plant limits.
% 1.a ($/MW^2) 2. b $/MW 3. c ($) 4.lower lomit(MW) 5.Upper limit(MW)
%no of rows denote the no of plants(n)
data=[0.007 7 240 100 500
0.0095 10 200 50 200
0.009 8.5 220 80 300
0.009 11 200 50 150
0.008 10.5 220 50 200
0.0075 12 120 50 120];
% Loss coefficients it should be squarematrix of size nXn where n is the no
% of plants
B=1e-4*[0.14 0.17 0.15 0.19 0.26 0.22
0.17 0.6 0.13 0.16 0.15 0.2
0.15 0.13 0.65 0.17 0.24 0.19
0.19 0.16 0.17 0.71 0.3 0.25
0.26 0.15 0.24 0.3 0.69 0.32
0.22 0.2 0.19 0.25 0.32 0.85
];
% Demand (MW)
Pd=700;
ObjectiveFunction=@eldnba;
dim=length(data(:,1));;
lb=0;
ub=1;
obj_no=1;
if size(ub,2)==1
ub=ones(1,dim)*ub;
lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initial parameters of the MODA algorithm
max_iter=100;
N=100;
ArchiveMaxSize=100;
Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;
Archive_member_no=0;
r=(ub-lb)/2;
V_max=(ub(1)-lb(1))/10;
Elite_fitness=inf*ones(1,obj_no);
Elite_position=zeros(dim,1);
Ant_Position=initialization(N,dim,ub,lb);
fitness=zeros(N,2);
V=initialization(N,dim,ub,lb);
iter=0;
position_history=zeros(N,max_iter,dim);
for iter=1:max_iter
for i=1:N %Calculate all the objective values first
Particles_F(i,:)=ObjectiveFunction(Ant_Position(:,i)');
if dominates(Particles_F(i,:),Elite_fitness)
Elite_fitness=Particles_F(i,:);
Elite_position=Ant_Position(:,i);
end
end
[Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, Ant_Position, Particles_F, Archive_member_no);
if Archive_member_no>ArchiveMaxSize
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
[Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
else
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
end
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
% Chose the archive member in the least population area as arrtactor
% to improve coverage
index=RouletteWheelSelection(1./(Archive_mem_ranks+1e-20));
if index==-1
index=1;
end
Elite_fitness=Archive_F(index,:);
Elite_position=Archive_X(index,:)';
Random_antlion_fitness=Archive_F(1,:);
Random_antlion_position=Archive_X(1,:)';
for i=1:N
index=0;
neighbours_no=0;
RA=Random_walk_around_antlion(dim,max_iter,lb,ub, Random_antlion_position',iter);
[RE]=Random_walk_around_antlion(dim,max_iter,lb,ub, Elite_position',iter);
Ant_Position(:,i)=(RE(iter,:)'+RA(iter,:)')/2;
Flag4ub=Ant_Position(:,i)>ub';
Flag4lb=Ant_Position(:,i)
Ant_Position(:,i)=(Ant_Position(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
end
display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
K(iter)=Elite_fitness;
end
[F P Pl]=eldnba(Elite_position)
plot(K)
grid
title('Iteration vs Best Function Value');
xlabel('Iteration')
ylabel('Function Value')
[1]彭暄惠, 陈才学, 熊志刚,等. 一种基于改进蚁狮算法的含电动汽车参与的微电网优化调度方法:.
部分理论引用网络文献,若有侵权联系博主删除。