如果在lsn等虚拟环境中开启需要先执行格式化,如果已经格式化的就不要二次格式化了
hadoop namenode -format
启动Hadoop
start-dfs.sh
start-yarn.sh
启动Hive
hive
查看是否启动
jps
备注:本步骤不用重复执行,第7部分已经执行完成了,重复一遍,是为了回顾文件的具体位置
将数据上传到hadoop集群所在节点
备注,MR清洗后的数据集见:https://download.csdn.net/download/m0_38139250/75060549
创建hdfs目录
hadoop fs -mkdir -p /sx/clickstream
hadoop fs -mkdir /sx/clickstream
hadoop fs -put /home/ubuntu/Code/clickstreamdata-pre /sx/clickstream
hadoop fs -put /home/ubuntu/Code/clickstreamdata-pageviews /sx/clickstream
hadoop fs -put /home/ubuntu/Code/clickstreamdata-visits /sx/clickstream
进入hive创建数据表
在终端输入hive 进入hive界面
hive
对应mr清洗完之后的数据clickstreamdata-pre,而不是原始日志数据
drop table if exists ods_weblog_origin;
create table ods_weblog_origin(
valid string,
remote_addr string,
remote_user string,
time_local string,
request string,
status string,
body_bytes_sent string,
http_referer string,
http_user_agent string)
partitioned by (datestr string)
row format delimited
fields terminated by '\001';
drop table if exists ods_click_pageviews;
create table ods_click_pageviews(
session string,
remote_addr string,
remote_user string,
time_local string,
request string,
visit_step string,
page_staylong string,
http_referer string,
http_user_agent string,
body_bytes_sent string,
status string)
partitioned by (datestr string)
row format delimited
fields terminated by '\001';
drop table if exists ods_click_stream_visit;
create table ods_click_stream_visit(
session string,
remote_addr string,
inTime string,
outTime string,
inPage string,
outPage string,
referal string,
pageVisits int)
partitioned by (datestr string)
row format delimited
fields terminated by '\001';
load data inpath '/sx/clickstream/clickstreamdata-pre' into table ods_weblog_origin partition(datestr='2021-09-18');
load data inpath '/sx/clickstream/clickstreamdata-pageviews' into table ods_click_pageviews partition(datestr='2021-09-18');
load data inpath '/sx/clickstream/clickstreamdata-visits' into table ods_click_stream_visit partition(datestr='2021-09-18');
drop table ods_weblog_detail;
create table ods_weblog_detail(
valid string, --有效标识
remote_addr string, --来源IP
remote_user string, --用户标识
time_local string, --访问完整时间
daystr string, --访问日期
timestr string, --访问时间
month string, --访问月
day string, --访问日
hour string, --访问时
request string, --请求的url
status string, --响应码
body_bytes_sent string, --传输字节数
http_referer string, --来源url
ref_host string, --来源的host
ref_path string, --来源的路径
ref_query string, --来源参数query
ref_query_id string, --来源参数query的值
http_user_agent string --客户终端标识
)
partitioned by(datestr string);
insert into table ods_weblog_detail partition(datestr='2021-09-18')
select c.valid,c.remote_addr,c.remote_user,c.time_local,
substring(c.time_local,0,10) as daystr,
substring(c.time_local,12) as tmstr,
substring(c.time_local,6,2) as month,
substring(c.time_local,9,2) as day,
substring(c.time_local,11,3) as hour,
c.request,c.status,c.body_bytes_sent,c.http_referer,c.ref_host,c.ref_path,c.ref_query,c.ref_query_id,c.http_user_agent
from
(SELECT
a.valid,a.remote_addr,a.remote_user,a.time_local,
a.request,a.status,a.body_bytes_sent,a.http_referer,a.http_user_agent,b.ref_host,b.ref_path,b.ref_query,b.ref_query_id
FROM ods_weblog_origin a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""), 'HOST', 'PATH','QUERY', 'QUERY:id') b as
ref_host, ref_path, ref_query, ref_query_id) c;
select count(*) as pvs,month,day,hour from ods_weblog_detail group by month,day,hour;
select count(*) as pvs,a.month as month,a.day as day from ods_weblog_detail a
group by a.month,a.day;
select count(*) as pvs,a.month as month,a.day as day,a.request request from ods_weblog_detail a
group by a.month,a.day,a.request;
select '2021-09-18',a.request,a.request_counts from
(
select request as request,count(request) as request_counts
from ods_weblog_detail
where datestr='2021-09-18'
group by request
having request is not null
) a
order by a.request_counts desc limit 1;
select remote_addr ,count(remote_addr) ipcount
from ods_click_stream_visit
group by remote_addr
having ipcount > 1
select tmp.day,tmp.remote_addr,tmp.acc_cnt
from
(select '2021-09-18' as day,remote_addr,count(session) as acc_cnt from ods_click_stream_visit
group by remote_addr) tmp
where tmp.acc_cnt>1
使用所有的独立访问的人,即独立的session个数除以所有的去重IP即可
select count(session)/count(distinct remote_addr) from ods_click_stream_visit where datestr='2021-09-18';
所有的页面点击次数累加除以所有的独立去重IP总和即可
select sum(pagevisits)/count(distinct remote_addr) from ods_click_stream_visit where datestr='2021-09-18';
drop table dw_pvs_everyday;
create table dw_pvs_everyday(pvs bigint,month string,day string);
insert into table dw_pvs_everyday
select count(*) as pvs,a.month as month,a.day as day from ods_weblog_detail a
group by a.month,a.day;
drop table if exists dw_pvs_everyhour_oneday;
create table if not exists dw_pvs_everyhour_oneday(month string,day string,hour string,pvs bigint) partitioned by(datestr string);
insert into table dw_pvs_everyhour_oneday partition(datestr='2021-09-18')
select a.month as month,a.day as day,a.hour as hour,count(*) as pvs from ods_weblog_detail a
where a.datestr='2021-09-18' group by a.month,a.day,a.hour;
drop table if exists dw_pvs_request_everyday;
create table if not exists dw_pvs_request_everyday(pvs bigint,month string,day string,request string);
insert into table dw_pvs_request_everyday
select count(*) as pvs,a.month as month,a.day as day,a.request request from ods_weblog_detail a
group by a.month,a.day,a.request;
echo $SQOOP_HOME
create database weblogs;
use weblogs;
drop table if exists weblogs.dw_pvs_everyday;
create table if not exists weblogs.dw_pvs_everyday
(
pvs int comment "每天浏览量",
month char(20) comment "月份",
day char(20) comment "日期"
);
drop table if exists weblogs.dw_pvs_everyhour_oneday;
create table if not exists weblogs.dw_pvs_everyhour_oneday
(
month char(20) comment "月份",
day char(20) comment "日期",
hour char(20) comment "小时",
pvs int comment "每天浏览量"
) ;
drop table if exists weblogs.dw_pvs_request_page;
create table if not exists weblogs.dw_pvs_request_page
(
pvs int comment "每天浏览量",
month char(20) comment "月份",
day char(20) comment "日期",
request char(200) comment "请求"
);
### 从hive表导出到mysql数据库表
sqoop export --connect jdbc:mysql://localhost:3306/weblogs --username root --password 123456 --m 1 --export-dir /user/hive/warehouse/dw_pvs_everyday --table dw_pvs_everyday --input-fields-terminated-by '\001'
# 注意:需要修改为本机ip地址
sqoop export --connect jdbc:mysql://localhost:3306/weblogs --username root --password 123456 --m 1 --export-dir /user/hive/warehouse/dw_pvs_everyhour_oneday/datestr=2021-09-18 --table dw_pvs_everyhour_oneday --input-fields-terminated-by '\001'
# 注意:需要修改为本机ip地址
sqoop export --connect jdbc:mysql://localhost:3306/weblogs --username root --password 123456 --m 1 --export-dir /user/hive/warehouse/dw_pvs_request_everyday --table dw_pvs_request_page --input-fields-terminated-by '\001'
# 注意:需要修改为本机ip地址
备注:如果用lsn,需要打开mysql-workbench,导出的文件位于/home/ubuntu/dumps中
本文完成了点击流分析项目的hive导入,hive分析与hive导出等三个部分。