OC中的类是一个继承自objc_object的objc_class结构体。
struct objc_class : objc_object {
// Class ISA; //继承自objc_object的isa指针
Class superclass; //父类
cache_t cache; // formerly cache pointer and vtable
class_data_bits_t bits; //包含类的属性和方法
}
cache_t
是做什么的?从字面上理解是缓存,那又存储什么?
cache_t是缓存空间,主要存储sel和imp
查看objc4-818.2 中cache_t结构体源码
struct cache_t {
explicit_atomic _bucketsAndMaybeMask;
union {
struct {
explicit_atomic _maybeMask;
#if __LP64__
uint16_t _flags;
#endif
uint16_t _occupied;
};
explicit_atomic _originalPreoptCache;
};
.....
}
上面的变量是占用cache_t的内存。其余静态变量和函数都不在cache_t内存中。
联合体位域中 _originalPreoptCache
和_maybeMask
、_flags
、_occupied
是共用内存空间。
_bucketsAndMaybeMask
是bucket 和mask共同占用8个字节。setBucketsAndMask
函数进行设置bucket和mask的值。
void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
uintptr_t buckets = (uintptr_t)newBuckets;
uintptr_t mask = (uintptr_t)newMask;
ASSERT(buckets <= bucketsMask);
ASSERT(mask <= maxMask);
// maskshift = 48 ,newmask在高16位,低48位为bucket
_bucketsAndMaybeMask.store(((uintptr_t)newMask << maskShift) | (uintptr_t)newBuckets, memory_order_relaxed);
_occupied = 0;
}
cache_t的内存结构大致可以如下
typedef uint32_t mask_t; // x86_64 & arm64 asm are less efficient with 16-bits
struct lg_bucket_t {
SEL _sel;
IMP _imp;
};
struct lg_cache_t {
struct lg_bucket_t * _buckets;
mask_t _mask; //缓存空间大小
uint16_t _flags;
uint16_t _occupied; //占用了多少缓存空间
};
struct lg_objc_class {
Class ISA;
Class superclass;
struct lg_cache_t cache; // formerly cache pointer and vtable
struct lg_class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
};
int main(int argc, const char * argv[]) {
@autoreleasepool {
// insert code here...
LGPerson *p = [LGPerson alloc];
Class pClass = [LGPerson class];
// p.lgName = @"Cooci";
// p.nickName = @"KC";
// 缓存一次方法 sayHello
// 4
[p sayHello];
[p sayCode];
struct lg_objc_class *lg_pClass = (__bridge struct lg_objc_class *)(pClass);
NSLog(@" %hu - %u",lg_pClass->cache._occupied,lg_pClass->cache._mask);
for (mask_t i = 0; icache._mask; i++) {
// 打印获取的 bucket
struct lg_bucket_t bucket = lg_pClass->cache._buckets[i];
NSLog(@"%@ - %p",NSStringFromSelector(bucket._sel),bucket._imp);
}
}
return 0;
}
输出如下
既然是缓存那么一定会有缓存的插入方法cache_t::insert()
void cache_t::insert(SEL sel, IMP imp, id receiver)
{
runtimeLock.assertLocked();
// Never cache before +initialize is done
if (slowpath(!cls()->isInitialized())) {
return;
}
if (isConstantOptimizedCache()) {
_objc_fatal("cache_t::insert() called with a preoptimized cache for %s",
cls()->nameForLogging());
}
#if DEBUG_TASK_THREADS
return _collecting_in_critical();
#else
#if CONFIG_USE_CACHE_LOCK
mutex_locker_t lock(cacheUpdateLock);
#endif
ASSERT(sel != 0 && cls()->isInitialized());
// Use the cache as-is if until we exceed our expected fill ratio.
//1.缓存占用+1操作
mask_t newOccupied = occupied() + 1;
//2. 获取老的缓存容量
unsigned oldCapacity = capacity(), capacity = oldCapacity;
//3. 判断缓存空间是否为空
if (slowpath(isConstantEmptyCache())) {
// Cache is read-only. Replace it.
//3.1 重新分配缓存
if (!capacity) capacity = INIT_CACHE_SIZE;
reallocate(oldCapacity, capacity, /* freeOld */false);
}
//4. newOccupied + 1 <= capacity*0.75 ,缓存容量小于缓存空间的0.75,跳过
else if (fastpath(newOccupied + CACHE_END_MARKER <= cache_fill_ratio(capacity))) {
// Cache is less than 3/4 or 7/8 full. Use it as-is.
}
// 5 是否支持满缓存
#if CACHE_ALLOW_FULL_UTILIZATION
else if (capacity <= FULL_UTILIZATION_CACHE_SIZE && newOccupied + CACHE_END_MARKER <= capacity) {
// Allow 100% cache utilization for small buckets. Use it as-is.
}
#endif
else {
// 6. 否则,就将原来的缓存扩容2倍
capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
if (capacity > MAX_CACHE_SIZE) {
capacity = MAX_CACHE_SIZE;
}
//6.1 开辟新的换从空间,释放旧的缓存空间
reallocate(oldCapacity, capacity, true);
}
//7.1获取缓存中buckets数组
bucket_t *b = buckets();
mask_t m = capacity - 1;
//7.2使用hash值找出sel的起始位置
mask_t begin = cache_hash(sel, m);
mask_t i = begin;
// Scan for the first unused slot and insert there.
// There is guaranteed to be an empty slot.
do {
//7.3 找出buckets数组中i位置的sel是否为空
if (fastpath(b[i].sel() == 0)) {
7.4. 空的,将缓存空间占用数+1
incrementOccupied();
b[i].set(b, sel, imp, cls());
return;
}
//7.5 如果相等直接放回
if (b[i].sel() == sel) {
// The entry was added to the cache by some other thread
// before we grabbed the cacheUpdateLock.
return;
}
} while (fastpath((i = cache_next(i, m)) != begin)); //7. 6 产生hash碰撞查找下一个位置
bad_cache(receiver, (SEL)sel);
#endif // !DEBUG_TASK_THREADS
}
- 缓存占用 occupied +1操作
- 获取现在的缓存容量capacity
- 判断缓存空间是否为空,否则跳过执行7
3.1 重新分配缓存 - newOccupied + 1 <= capacity*0.75 ,缓存容量小于缓存空间的0.75,否则跳过执行7
- 是否支持满缓存, 否则7
- 就将原来的缓存扩容capacity 2倍
- 缓存操作
7.1 获取缓存中buckets数组
7.2 使用hash值找出sel在buckets插入的起始位置i
7.3 找出buckets数组中i位置的sel是否为空,空的,将缓存空间占用数+1
7.4 如果相等直接返回
7.5 产生hash碰撞查找下一个插入的位置
其中reallocate
void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
bucket_t *oldBuckets = buckets();
bucket_t *newBuckets = allocateBuckets(newCapacity);
setBucketsAndMask(newBuckets, newCapacity - 1);
//释放旧缓存空间的buckets
if (freeOld) {
collect_free(oldBuckets, oldCapacity);
}
}
void cache_t::collect_free(bucket_t *data, mask_t capacity)
{
#if CONFIG_USE_CACHE_LOCK
cacheUpdateLock.assertLocked();
#else
runtimeLock.assertLocked();
#endif
if (PrintCaches) recordDeadCache(capacity);
_garbage_make_room ();
garbage_byte_size += cache_t::bytesForCapacity(capacity);
garbage_refs[garbage_count++] = data;
cache_t::collectNolock(false);
}
总结:
- cache_t是方法的缓存空间,主要使用buckets存储sel和imp。
- 插入sel和imp时,需要检查缓存空间是否足够,否则需要扩容两倍开启新的buckets,并对原有的buckets进行释放