- 计算机网络八股总结
Petrichorzncu
八股总结计算机网络笔记
这里写目录标题网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型)==三次握手和四次挥手具体过程及原因==三次握手四次挥手TCP/IP协议组成==UDP协议与TCP/IP协议的区别==Http协议相关知识网络地址,子网掩码等相关计算网络模型划分(五层和七层)及每一层的功能五层网络模型应用层:负责处理网络应用程序,如电子邮件、文件传输和网页浏览。主要协议包括HTTP、FTP
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- TextCNN:文本卷积神经网络模型
一只天蝎
编程语言---Pythoncnn深度学习机器学习
目录什么是TextCNN定义TextCNN类初始化一个model实例输出model什么是TextCNNTextCNN(TextConvolutionalNeuralNetwork)是一种用于处理文本数据的卷积神经网(CNN)。通过在文本数据上应用卷积操作来提取局部特征,这些特征可以捕捉到文本中的局部模式,如n-gram(连续的n个单词或字符)。定义TextCNN类importtorch.nnasn
- ok虚拟化
qq_25467441
网络
核心S12700E汇聚S6730-H接入S5731-H在云数据中心中,虚拟机迁移时必须保持IP地址不变,并确保TCP连接不中断。因此,虚拟机的动态迁移只能在同一二层网络内进行,无法跨越二层网络。这一需求促使数据中心的网络架构发生了重大变革,东西向流量逐渐超过南北向流量,推动了扁平化的大二层网络模型的发展。由于虚拟机迁移依赖二层网络,传统的三层架构(接入层、汇聚层、核心层)逐渐失去其适用性。传统架构
- 每天五分钟玩转深度学习框架PyTorch:获取神经网络模型的参数
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能模型参数python
本文重点当我们定义好神经网络之后,这个网络是由多个网络层构成的,每层都有参数,我们如何才能获取到这些参数呢?我们将再下面介绍几个方法来获取神经网络的模型参数,此文我们是为了学习第6步(优化器)。获取所有参数Parametersfromtorchimportnnnet=nn.Sequential(nn.Linear(4,2),nn.Linear(2,2))print(list(net.paramet
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- Python高层神经网络 API库之Keras使用详解
Rocky006
pythonkeras开发语言
概要随着深度学习在各个领域的广泛应用,许多开发者开始使用各种框架来构建和训练神经网络模型。Keras是一个高层神经网络API,使用Python编写,并能够运行在TensorFlow、CNTK和Theano之上。Keras旨在简化深度学习模型的构建过程,使得开发者能够更加专注于实验和研究。本文将详细介绍Keras库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- mycat配置双主双从实现mysql读写分离
Zozzoooz
mycat读写分离mysql数据库javadocker
docker容器下mysql主从配置mycat配置双主双从实现mysql读写分离拉取mysql5.7dockerpullmysql:5.7运行mysql镜像mysqlM1主容器:dockerrun-p3301:3306--namemysql-master1-v/usr/local/mysql-master1/conf:/etc/mysql/conf.d-v/usr/local/mysql-mast
- MHA+MYCAT 高可用架构
第九系艾文
linuxLinuxtools服务器数据库mycatmhalinux
架构图如下:本次是4服务器架构如下环境:centos7.2x64mariadb10.4MHA5.7MyCat1.6.7IP规划IP功能10.1.41.166VIP10.1.41.167master,mycat,mha.node10.1.41.168slave(master),mha.node10.1.41.165slave,mycat,keepalived10.1.41.169slave,myca
- mycat双主高可用架构部署-MySQL5.7环境部署第一台
龙哥·三年风水
MySQL5.7.36分布式高可用架构mysql分布式
MySQL5.7服务器IP是192.168.31.209及192.168.31.2101、192.168.31.209:3307实例部署a、配置文件mkdir-p/data/mysql/mysql3307/{data,logs}#创建MySQL数据及日志目录vi/data/mysql/mysql3307/my3307.cnf#配置文件整理[client]#password=your_passwor
- 中间件的学习理解总结
DCDDDDcccc
中间件学习
目录一、定义与作用二、主要类型数据库中间件远程过程调用中间件面向消息的中间件事务处理中间件三、特点与优势独立性高效性可扩展性可靠性四、应用场景企业应用集成分布式系统电子商务移动应用开发五、数据库中间件功能细节:应用优势:六、远程过程调用中间件功能细节:应用优势:七、面向消息的中间件功能细节:应用优势:八、事务处理中间件功能细节:应用优势:数据库中间件MyCat:ShardingSphere:远程过
- 微积分在神经架构搜索中的应用
光剑书架上的书
深度强化学习原理与实战元学习原理与实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
微积分在神经架构搜索中的应用1.背景介绍随着深度学习技术的飞速发展,神经网络模型的复杂度也在不断提高,从最初的简单全连接网络,到如今的卷积神经网络、循环神经网络、注意力机制等各种复杂的神经网络架构。这些先进的神经网络架构大大提高了深度学习模型的性能,但同时也给神经网络的设计和调优带来了巨大的挑战。手工设计神经网络架构通常需要大量的专业知识和经验积累,过程繁琐复杂,难以推广。为了解决这一问题,神经架
- 深度解析:从概念到变革——Transformer大模型的前世今生以及大模型预备知识讲解[知存科技]
汀、人工智能
LLM技术汇总transformer深度学习人工智能自然语言处理LLMattention机制编码器解码器
深度解析:从概念到变革——Transformer大模型的前世今生点击:知存科技相关课程推荐知存科技是全球领先的存内计算芯片企业。针对AI应用场景,在全球率先商业化量产基于存内计算技术的神经网络芯片。凭借颠覆性的技术创新,知存科技突破传统计算架构局限,利用存储与计算的物理融合大幅减少数据搬运,在相同工艺条件下将AI计算效率提升2个数量级,充分满足快速发展的神经网络模型指数级增长的算力需求。相关链接推
- 亚马逊云科技大语言模型加速OCR应用场景发展
热爱coding的星辰
ocr自然语言处理人工智能aws
大语言模型是一种基于神经网络的自然语言处理技术,它能够学习和预测自然语言文本中的规律和模式,可以理解和生成自然语言的人工智能程序。在大型语言模型中,神经网络模型可以通过学习大量的语言数据,自动提取自然语言文本中的特征和模式,以实现自然语言的理解和生成。OCR技术(OpticalCharacterRecognition)是一种广泛应用的人工智能技术,在大语言模型基础上,能够从文档或图像中提取文本、手
- 深度学习框架相关-Python模块的介绍和使用---torch
sccum
Python常用库的介绍和使用深度学习python人工智能
文章摘要:'''1.torch模块,是一个开源的深度学习框架,主要用于构建和训练神经网络。PyTorch的设计目标是提供灵活且高效的工具集,用于深度学习和科学计算;2.下面主要介绍torch模块的五个功能:数据加载和处理,GPU加速,建立网络模型,模型的保存和加载,梯度更新和参数优化;上面功能主要用到的子模块如下:torch.utils.data、torch.cuda、torch.nn、torch
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- Linux系统是如何收发网络包的
一个木的感情的小卷卷
计算机网络git网络协议数据库
Linux系统是如何收发网络包的参考资源小林coding2022.3.29OSI网络模型解决不同设备网络互联中的兼容性问题->解决不同设备在网络互联中的兼容性问题国际标准化组织制定了开放式系统互联通信参考模型->OSI网络模型该模型一共有七层应用层负责给应用程序提供统一的接口表示层负责把数据转换成兼容另一个系统能识别的格式会话层负责建立管理终止表现层实体之间的通信会话传输层负责端到端的数据传输网络
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 计算机网络模型介绍——OSI七层模型 vs TCP/IP五层模型 及各层协议
2020拯救世界
OSI七层模型vsTCP/IP五层模型及各层协议一.OSI七层模型OSI七层模型(OpenSystemInterconnect)即开放系统互连参考模型,是由ISO(InternationalOrganizationforStandardization)国际标准化组织提出的,用于计算机或通信系统间互联的标准体系。从上到下可分为七层:每一层都完成特定的功能,并为上一层提供服务,并使用下层所提供的服务。
- 域与活动目录
小Z资本
网安学习网络服务器运维安全
工作组:对等网络模型,不依赖中央控制服务器,适合小型网络\\计算机名\\IP地址来访问该计算机的共享资源域(domain):所有计算机成员被集中管理每个域都有一个或多个域控制器设置域:安装AD,将至少一台服务器提升为域控制器域结构:单域:一个或多个DC域树:一个或多个相关域的集合。共享一个连续的命名空间。平级或有层次域林:一个或多个域树的集合。每个树命名空间独立,但共享一个全局目录架构。林是AD的
- 网络模型与ARP详解
zhj574182446
网络协议网络协议网络
自学网络协议学到什么程度才算掌握,思考很久并在网上阅读了一番后,悟出了:不同程序员,学得程度不一样。一个java程序员,掌握基本的网络模型即可,从访问一个google走过的路由,什么时候涉及什么协议。了解了大概的网络模型之后,你在编程中基本所需的已足够。再深入了解一些原理的东西,比如IP选址、ARP实现与ARP攻防。我学习的网络模型总结:从我访问一个google开始,在浏览器中访问http://w
- 为什么我们会产生共情?
葭芷之畔
Bower(1981)提出了关于情绪记忆的理论模型——情感联想网络理论。该理论认为,人们的记忆网络模型不仅包含对语义的记忆,还与情感记忆相连接,语义和情感记忆交叉形成结点是一个富含语义和情感结点的网络。若外界刺激激活了其中的一个结点后,语义和情感结点就将同时被激活。这就使得人们偏向于提取与自身情感相一致的信息。
- Docker网络模型深度解析教程
man2017
运维docker网络容器
Docker网络模型深度解析教程1.引言目的与目标读者本教程旨在为初学者和有一定经验的开发者提供一份详尽的指南,以理解Docker网络模型的工作原理及其在实际部署中的应用。适合对Docker感兴趣的技术人员、运维工程师以及开发人员。Docker简介Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上。D
- Docker 网络模型深度解析
乌南竹
docker网络容器
Docker是现代应用程序开发和部署中广泛使用的容器化平台,它的核心优势之一在于其网络模型的灵活性与功能性。Docker网络模型的设计旨在支持容器之间的通信,并确保容器可以在多种网络环境中安全、可靠地运行。在本文中,我们将对Docker网络模型进行深度解析,了解其组成部分、主要类型、工作原理以及常见的网络管理策略。一、Docker网络的基本概念在Docker中,网络允许容器彼此之间以及与外部世界进
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- 设备仪器仪表盘读数识别系统 YOLOv5
燧机科技SuiJi
YOLO机器学习人工智能深度学习
设备仪器仪表盘读数识别系统基于YoLov8网络模型智能视觉分析技术,设备仪器仪表盘读数识别系统自动识别指针型仪表读数。设备仪器仪表盘读数识别系统对工业仪表盘数据进行实时读取,不需人为干预当监测到指针仪表读数数据异常时,立即自动抓拍告警提醒后台值班管理人员及时处理,避免意外的发生。设备仪器仪表盘读数识别系统主要适用于油田、工厂等场景需要值班人员及时统计指针仪表读数信息。设备仪器仪表盘读数识别系统通过
- 做大模型 千万别买苹果笔记本电脑
路人与大师
电脑
对于大模型(如大型神经网络模型)的训练和推理,苹果笔记本电脑(尤其是搭载AppleSilicon芯片的MacBook)确实存在一些限制,这些问题可能让开发者在处理大规模AI项目时感到不适合。以下是一些主要原因:1.GPU不适合深度学习AppleSiliconGPU限制:Apple自家芯片(如M1和M2)的GPU架构与传统的NVIDIAGPU(通常是深度学习和大模型训练的首选)不同。NVIDIA的C
- Docker网络模型深度解析
109702008
网络docker人工智能学习
Docker网络模型是Docker容器化技术的重要组成部分,它通过不同的网络驱动来实现容器间及容器与外部环境的通信。深入理解Docker网络模型有助于更好地管理和优化容器化应用。下面我们将详细探讨Docker的主要网络模式及其实现机制。1.Docker网络驱动概述Docker提供了多种网络驱动,用于满足不同的网络需求。主要的网络驱动包括:-Bridge(桥接网络)-Host(主机网络)-None-
- PyTorch Geometric(torch_geometric)简介
小桥流水---人工智能
机器学习算法深度学习人工智能pytorch人工智能python
在深入探讨PyTorchGeometric(通常简称为PyG)之前,我们先了解一下它的背景和应用。PyG是基于PyTorch的一个扩展库,专为图数据和图网络模型设计。图网络是深度学习领域的一种强大工具,它能够处理结构化数据,如社交网络、分子结构、交通网络等。PyTorchGeometric的主要功能数据处理与加载:图数据的简化表示:PyG提供了一种高效的方式来表示和存储图数据。主要是通过Data对
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl