- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- 优秀吧,不要留恋身后。
左手咖啡右手coffee
我们行至桥边,径直跨过,又转身烧毁,烧掉了前行的证据,只留下记忆中的滚滚浓烟以及也许曾经湿润的双眼。——汤姆·斯托帕德在中间的人永远都面临被嫉妒和攻击只有当你成为优秀到别人触碰不到的高度你才彻底和言语的攻击与愚昧脱离关系因为你根本不关心身后人你跟他们的差距已经不是一两句话可以改变的事实旁边人的细微言语改变不了你的成功轨迹但这部分人只是少数多数的我们仍然处于大部分人的中等位置就好像是正态分布曲线两端
- 成功学不能学
润物老师
成功是一个小概率事件,混得太惨也是。大部分人,还是过着不太成功不太失败的日子。如果我们要修理一辆汽车,你会只坚持用扳手,不用螺丝刀么?我们既可以用扳手,也可以用螺丝刀。关键是,目标是把车修好。要点拆解一、成功永远是小概率事件通过对炼金术的案例,以及数学中的正态分布曲线,即无论什么群体,随机变量的概率分布大多数总会停留在某一个值前后,离这个值越远,出现的概率越少。来说明,成功也是个小概率事件,混的太
- 数学建模——Box-Cox变换
Desire.984
Python数学建模数学建模python
用途:当某个随机变量XXX不服从正态分布的时候,可以尝试通过这种变换将其变成正态分布。两个常用的变换对数变换:已知随机变量XXX,如果有lnX∼N(μ,σ2)\lnX\simN(\mu,\sigma^2)lnX∼N(μ,σ2),那么对XXX使用对数变换。适合随着自变量的增加,因变量的方差也增大的模型。平方根变换:已知随机变量XXX,如果有X∼N(μ,σ2)\sqrtX\simN(\mu,\sig
- 数模原理精解【8】
叶绿先锋
基础数学与应用数学人工智能统计分析概率论数学建模
文章目录协方差概述协方差的定义协方差的计算协方差的例子协方差矩阵协方差矩阵定义协方差矩阵的性质协方差矩阵的计算协方差矩阵的例子协方差矩阵的例题多元正态分布基础多元正态分布密度函数多元正态分布密度函数Julia实现详细解释定义计算例子例题参考文献协方差概述协方差是一种统计度量,用于描述两个变量之间的线性相关程度以及它们变化的趋势是否一致。具体来说,协方差计算的是两个变量同时偏离其均值的程度。如果两个
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 2018-04-17
冰咋吃
今天付出一分的发奋,可换取明天十分安乐,今天透支一分安乐,可换取明天十分饥寒。人一生中最可怕是无所事事,最可恨是无所追求,最可悲是无所作为。
- python产生20个随机数_python随机数,python产生20个随机整数
weixin_39637614
python产生20个随机数
1从给定参数的正态分布中生成随机数当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:importnumpyasnp#定义从正态分布中获取随机数的函数defget_normal_random_number(lo
- 一些可能很有用的矩阵知识
黑洞是不黑
transformer数学理论矩阵线性代数人工智能
一些可有可无的矩阵知识酉矩阵酉矩阵一个服从正态分布的向量乘以一个酉矩阵,得到的向量仍然服从正态分布酉矩阵是一个复数矩阵,满足其转置的共轭等于其逆矩阵。当一个向量通过一个酉矩阵进行线性变换时,它的模长保持不变,只是发生了旋转和缩放。这意味着如果原始向量服从正态分布,变换后的向量仍将服从相同的正态分布。proof:proof:proof:当一个向量服从正态分布时,其概率密度函数(PDF)可以表示为:f
- matlab 发射随机信号,matlab随机信号处理
刚下拖拉机
matlab发射随机信号
matlab中rand和randn是产生随机数的命令,x=rand(1,N)产生(0,1)区间均匀分布的长度为N的随机信号,x=randn(1,N)产生长度为N且具有零均值和单位方差的正态分布的随机信号。matlab中产生伪随机数需要种子,把不同的种子用于不同的随机数生成器产生不同的伪随机数。betarnd贝塔分布的随机数生成器binornd二项分布的随机数生成器chi2rnd卡方分布的随机数生成
- ValueError: Expected parameter scale (Tensor of shape (2854529,)) of distribution Normal(loc: torch.
zhangfeng1133
pytorch深度学习人工智能
正态分布,尺度需要大于0,解决办法scale=F.softplus(scale)Traceback(mostrecentcalllast):Theaboveexceptionwasthedirectcauseofthefollowingexception:Traceback(mostrecentcalllast):File"/home/aistudio/bnn_pyro_fso_middle_2_
- Spark MLlib模型训练—回归算法 GLR( Generalized Linear Regression)
猫猫姐
Spark实战回归spark-ml线性回归spark
SparkMLlib模型训练—回归算法GLR(GeneralizedLinearRegression)在大数据分析中,线性回归虽然常用,但在许多实际场景中,目标变量和特征之间的关系并非线性,这时广义线性回归(GeneralizedLinearRegression,GLR)便应运而生。GLR是线性回归的扩展,能够处理非正态分布的目标变量,广泛用于分类、回归以及其他统计建模任务。本文将深入探讨Spar
- 2018-04-17
54f0d725963c
日精进今天休息,因为之前猛禽那辆车在人保系统里一直带不出信息,去年是在太平洋保险公司上的,当时未上车牌,前段时间验车给太平洋打电话加了车牌,可现在人保系统还是带不过来信息,也请教了大厅李主任,也帮忙问了分公司,但最后结果还是不行,客户只能去太平洋上。核心:结果不尽人意,但自己尽力就好转身用:尽力服务好客户
- 数学建模—SPSS学习笔记
shellier
数学建模—SPSS学习笔记学习笔记数学建模
1、描述统计(描述一组数据的集中和离散情况)SPSS操作分析—描述统计—描述度量标准:度量(定距变量IntervalData)【可以分类(=和≠),可以排序(>和和30),其样本均值都近似服从正态分布。条件二:样本数据是连续的且数据之间的差异不能太大(不能包含离群点或异常值)。条件三:每组样本之间相互独立。条件四:皮尔逊相关系数有效的前提是两组数据(两个对象)之间呈线性关系。2)散点图检验使用EX
- R 实现正态性检验,方差齐性检验t检验
霍歌
检验数值是否服从正态分布有很多种方式,这种比较简单。mu<-c(0,0,0)Sigma<-matrix(c(1,0.5,0.25,0.5,1,0.5,0.25,0.5,1),3,3)M<-mvrnorm(1000,mu,Sigma)QQ-PLOTqqnorm(M[,1]);qqline(M[,1],col=2)shapiro,testshapiro.test(M[,1])P值大于0.05的意义是符
- python绘制二维正态分布概率密度图(2d,3d)
马鹿91
pythonnumpy
importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportmultivariate_normal#定义均值和协方差矩阵mean=np.array([0,0])covariance=np.array([[1,0.5],[0.5,1]])#创建一个网格x,y=np.meshgrid(np.linspace(-3,3,500),np.
- python验证中心极限定理_中心极限定理的最最通俗解释
Thegirlisvery
python验证中心极限定理
一、什么是中心极限定理在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。每次从这些总体中随机抽取n个抽样,一共抽m次。然后把这m组抽样分别求出平均值,这些平均值的分布接近正态分布。设从均值为μ、方差为(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为的正态分布。中心极限定理告诉我们,当样本量足够大时,样本均值的分布慢慢
- 中心极限定理
不倒的不倒翁先森
概率论
中心极限定理(CentralLimitTheorem,CLT)是概率论中的一个重要定理,它说明了在某些条件下,独立随机变量的和(或平均值)趋向于正态分布的性质。具体来说,中心极限定理可以描述为:定理表述:设(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,…,Xn)是一组相互独立、服从相同分布的随机变量,其数学期望为μ\muμ,方差为σ2\sigma^2σ2(有限且不为零
- 2019-10-19-突然觉得自己看懂了,一元随机变量函数的密度函数问题
赵小幺bies
这样的话,的分布函数知道了,求Y的密度函数就是一件很简单的事了。如果是个严格单调函数,有下面的公式可以用。如果不是严格单调函数,有上面的定理可以用。是单调函数时,注意绝对值符号的应用正态分布应用的太多了,单独拿出来强调一下小例子1:,求的分布函数,密度函数。显然,Y也是正态分布,它的期望是它的方差是:从而,其分布函数和密度函数也就可以写出来了。的密度函数是:分布函数从而的密度函数是分布函数是一般来
- 数据挖掘|数据预处理|基于Python的数据标准化方法
皖山文武
数据挖掘数据建模与分析python数据挖掘开发语言
基于Python的数据标准化方法1.z-score方法2.极差标准化方法3.最大绝对值标准化方法在数据分析之前,通常需要先将数据标准化(Standardization),利用标准化后的数据进行数据分析,以避免属性之间不同度量和取值范围差异造成数据对分析结果的影响。1.z-score方法Z-score方法是基于原始数据的均值和标准差来进行数据标准化的,处理后的数据均值为0,方差为1,符合标准正态分布
- 每天一个数据分析题(二百零一)
紫色沙
数据分析题库数据分析数据挖掘
以下关于线性回归模型的经典假设,描述正确的是()。A.自变量与因变量必须有线性关系B.正交假定:扰动项与自变量不相关,期望值为0C.扰动项之间相互独立且服从方差相等的同一个正态分布D.多元线性回归中,自变量之间不能有强共线性题目来源于CDA模拟题库点击此处获取答案
- 2018-04-17
siuhoiyan
自从听朋友表示了对堂妹前途的担忧之后,我特别关注了一下自己的表妹。我的表妹今年毕业回国,密锣紧鼓找了一轮工作后刚刚上岗。她之前告诉我,在这家公司是拿固定工资,不像另一家拿提成那么不稳定(有可能是出于不自信做出的选择);今天聊到这份工作可能比想象中艰苦,她自我安慰说不用像别的公司给提成也累成狗,要在家工作还不算加班——至少她现在可用加班工时抵补休。我觉得很奇怪的地方是,遇到工作辛苦,用来安慰自己的竟
- JavaScript 正态分布的一种实现方法
老邵
functiongetWeight(){//正态分布函数functiongaussianRandom(start,end){returnMath.floor(start+gaussianRand()*(end-start+1));//更偏向于中间的值乘以前后的差,加上前面的值,得到更偏向于中间的最终值}functiongaussianRand(){varrand=0;for(vari=0;i{re
- 成长是每个人贯穿一生的课题,让心理学家荣格带你自愈,带你成长
记不住正态分布的蔷色
文/记不住正态分布的蔷色知乎上有人问,孩子上初一了,女孩,最近强烈要求每晚要锁门睡觉怎么办,大家有同款娃吗?结果下面的回答多半是挺娃,而不是挺家长的。我也写了个回答,我说,不知道有没有同款娃,但我相信有很多同款父母。结果很多人在评论区说,因为自己锁门,妈妈把门砸了,还说她不对。还有人说,已经结婚了,父母进房间还是不敲门。说实在的,我的家庭氛围相对轻松,小时候农村也没有条件给每个孩子安排一个房间,所
- 2018-04-17
坐家溜溜
鞭长莫及:因为乐客观条件的限制达不到,不是自己的能力问题。望尘莫及:远远落后,自己能力有问题。望其项背:难以企及。
- 概率密度函数(PDF)与神经网络中的激活函数
daode3056
神经网络算法pdf人工智能机器学习算法
原创:项道德(daode3056,daode1212)在量子力学中,许多现象都是统计的结果,基本上用的是正态分布,然而,从本质上思考,应该还存在低阶的分布,标准的正态分布是它的极限,这样一来,或许在某些状态,要多关注瞬间与低能的统计分布,这就要推出一些低阶的分布,些分布大多都要出现特殊函数,先看看Besselfunction:以下是作者应用“第二类虚宗量的贝塞尔函数”的积分:它也代表一类分布,它是
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- Z分数标准化
草明
数据结构与算法机器学习人工智能
Z分数标准化是一种常用的数据标准化方法,用于将不同数据集的值转换为具有相同比例和零均值、标准差为1的标准正态分布。这种标准化方法对于机器学习和统计分析中的特征缩放和数据预处理非常有用。标准化的步骤如下:计算均值和标准差:对于给定的数据集,首先计算其均值(μ)和标准差(σ)。计算Z分数:对于数据集中的每个数据点Xi,使用下面的公式计算其Z分数:这样做可以将原始数据转换为以数据集均值为中心,标准差为单
- R语言GARCH族模型:正态分布、t、GED分布EGARCH、TGARCH的VaR分析股票指数|附代码数据
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=31023最近我们被客户要求撰写关于GARCH族模型的研究报告,包括一些图形和统计输出。如何构建合适的模型以恰当的方法对风险进行测量是当前金融研究领域的一个热门话题(点击文末“阅读原文”获取完整代码数据********)。VaR方法作为当前业内比较流行的测量金融风险的方法,具有简洁,明了的特点,而且相对于方差来讲,更多的将投资人的损失作为风险具有更
- 《为什么》第二章:因果推断的起源
苏耀勇
如题所示,这一章主要讲解的是因果关系的历史和起源。从高尔顿的弹珠台,到卡尔.皮尔逊的相关性、到休厄尔.赖特的路径图和贝叶斯定律。高尔顿的弹珠台:高尔顿用这种类似弹珠台的仪器解释遗传特性,比如身高在人类中的分布基本上符合(a)这样的钟形(正态分布)。但是,这样的模型存在一个致命的缺陷,如果用若干级弹珠台模拟若干代人群的遗传特性的话,底部的钟形分布就会越来越宽,越来越散开,这意味着身高的人的后代会越来
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc