【easy-rpc】二、优化日志:支持Reactor模式IO多路复用机制

本文为原创文章,转载请注明出处
查看[easy-rpc]系列内容请点击:https://www.jianshu.com/nb/47424623

源码地址:这里

大家可以用在自己小型的项目上了,我自己测了,针对200个并发量,每个线程500个数字的数组排序的任务,在多线程情况下,仅需1.414秒~

默认情况下,easy-rpc的server端是以单线程模式启动的,启动后事务执行具有原子性。我们可以通过server的configuration来配置,使其以Reactor主从多线程方式运行,只需要按照如下代码:

server.getConfiguration().setThreadType(ThreadType.MULTI);

系统就会以多线程模式运行啦~

另外,这次对项目的结构做了一次优化。主要分为四个包:

  • server:服务器相关内容
  • client:客户端相关内容
  • core:服务器和客户端都需要的工具类
  • samples:一些示例可以从这里找哦~

在server中,IO多路复用机制主要定义在com.codelifeliwan.rpc.server.nio包中,入口类就是·MultiDataAcceptEventLoop·类,对应的单线程模式入口类是:SingleDataAcceptEventLoop

在该包下有一个子包reactor,其中包含了以下几个文件:

  • Reactor.java:Reactor模式的主类
  • Acceptor.java:理论上的读写IO主类(这里暂时读写IO不放在这里,而是放在了 SocketHandler.java中)
  • SocketHandler.java:数据处理主类

下面一一说明。

Reactor.java

Reactor模式的主类,只包含一个线程,主要负责对服务器端口的监听,其中有一个主要的对象ServerSocketChannel对象,以单线程模式监听服务器端口,一旦监听到事件,就会发送到Acceptor中进行处理。

一个Reactor包含了多个Acceptor,分别运行在不同的线程中,在Reactor中通过数组和线程池来管理Acceptor

除了负责监听端口外,Reactor还负责对于Accestor线程池和SocketHandler线程池的初始化工作。

// Reactor.java
package com.codelifeliwan.rpc.server.nio.reactor;

import com.codelifeliwan.rpc.server.config.Configuration;
import org.apache.log4j.Logger;

import java.net.InetSocketAddress;
import java.nio.channels.*;
import java.util.concurrent.*;

/**
 * @author LiWan
 * 

* 主从Reactor多线程 模式处理,本类是主Reactor,只有一个线程 * 主Reactor线程只负责连接的建立工作,具体的服务器通讯和IO操作放在Acceptor里面实现 *

* 默认的Acceptor工作线程数(即Acceptor个数)为CPU线程数*2,可自主设置 */ public class Reactor extends Thread { private static final Logger log = Logger.getLogger(Reactor.class); private volatile boolean started = false; /** * 业务处理的线程池 * 默认为自动伸缩的线程池 */ private Executor processThreadPool; /** * 执行Accestor的线程池 */ private Executor accestorThreadPool; /** * 服务器配置信息 */ private Configuration configuration; private Acceptor[] acceptors; private volatile int acceptorCount = 1; /** * 服务器事件监听,只监听 ACCEPT 事件 */ private ServerSocketChannel channel; public Reactor(Configuration configuration, int acceptorCount) throws Exception { this(null, configuration, acceptorCount); } public Reactor(Configuration configuration) throws Exception { this(null, configuration); } public Reactor(Executor processThreadPool, Configuration configuration) throws Exception { this(processThreadPool, configuration, Runtime.getRuntime().availableProcessors() * 2); } public Reactor(Executor processThreadPool, Configuration configuration, int acceptorCount) throws Exception { if (processThreadPool != null) { this.processThreadPool = processThreadPool; } else { // 默认创建线程池中的线程个数从 cpu线程数 到 cpu线程数*5,线程过期时间1分钟 this.processThreadPool = new ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(), Runtime.getRuntime().availableProcessors() * 5, 1, TimeUnit.MINUTES, new LinkedBlockingDeque<>()); } this.configuration = configuration; this.acceptorCount = acceptorCount; } /** * 初始化Reactor * 初始化IO线程池(Acceptor线程池)并开始执行 * * @throws Exception */ private synchronized void init() throws Exception { channel = ServerSocketChannel.open(); // channel.configureBlocking(false); channel.socket().bind(new InetSocketAddress(configuration.getListeningPort())); acceptors = new Acceptor[this.acceptorCount]; for (int i = 0; i < acceptors.length; i++) { acceptors[i] = new Acceptor(processThreadPool, configuration); } // 初始化并执行IO线程池 accestorThreadPool = Executors.newFixedThreadPool(acceptors.length); for (Acceptor acceptor : acceptors) { accestorThreadPool.execute(acceptor); } } /** * 复写run方法 */ public synchronized void run() { if (started) { log.info("Thread " + Thread.currentThread().getId() + " already started."); return; } started = true; try { init(); // 轮流使用Acceptor执行IO任务 int round = 0; // 下一个要使用的Acceptor指针 acceptorCount = acceptors.length; while (started && (!Thread.currentThread().isInterrupted())) { // 此处会阻塞到有连接请求为止 SocketChannel c = channel.accept(); // 将该请求转发到对应的线程上执行IO操作 c.configureBlocking(false); acceptors[round++].registerConnectChannel(c); round = round % acceptorCount; } } catch (Exception e) { e.printStackTrace(); log.error(e.getMessage()); } } public void shutdown() throws Exception { for (Acceptor acceptor : acceptors) acceptor.close(); started = false; channel.close(); Thread.currentThread().interrupt(); } }

Acceptor.java

理论上来说,Accestor是对网络IO读写的操作,但是这里因为直接使用Socket连接来进行,所以目前Acceptor中只负责对于不同网络事件的轮询、转发和状态转换工作。

// Acceptor.java
package com.codelifeliwan.rpc.server.nio.reactor;

import com.codelifeliwan.rpc.server.config.Configuration;
import com.codelifeliwan.rpc.core.RPCByteBuffer;
import lombok.Getter;
import org.apache.log4j.Logger;

import java.io.Closeable;
import java.io.IOException;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;
import java.util.concurrent.Executor;

/**
 * @author LiWan
 * 

* 负责具体的网络IO操作,并将执行下发到线程池中运行 */ @Getter public class Acceptor implements Closeable, Runnable { private static final Logger log = Logger.getLogger(Acceptor.class); /** * 具体处理的线程池,在一个Server内共享该线程池 */ private Executor processThreadPool; private volatile Selector selector; private Configuration configuration; private volatile boolean closed = true; public Acceptor(Executor processThreadPool, Configuration configuration) throws Exception { this.processThreadPool = processThreadPool; this.configuration = configuration; this.selector = Selector.open(); } @Override public void close() throws IOException { selector.close(); closed = true; Thread.currentThread().interrupt(); } /** * 从主Reactor注册channel,这里只监听OP_CONNECT和OP_READ请求 * * @param sc * @throws Exception */ public void registerConnectChannel(SocketChannel sc) throws Exception { registerConnectChannel(sc, SelectionKey.OP_CONNECT | SelectionKey.OP_READ); } public void registerConnectChannel(SocketChannel sc, int status) throws Exception { sc.register(selector, status, this); selector.wakeup(); } /** * 读取并处理消息 */ public void handleExecutor(SocketChannel channel, RPCByteBuffer buffer) throws Exception { processThreadPool.execute(new SocketHandler(configuration, channel, buffer)); } private void handleKey(SelectionKey key) throws Exception { if (key.isConnectable()) { handleConnectEvent(key); } else if (key.isAcceptable()) { handleAcceptEvent(key); } else if (key.isReadable()) { handleReadEvent(key); } else if (key.isWritable()) { handleOtherEvent(key); } else { handleOtherEvent(key); } } public void run() { closed = false; while (!closed && (!Thread.currentThread().isInterrupted())) { try { int eventCount = selector.select(); if (eventCount == 0) continue; Set keys = selector.selectedKeys(); Iterator iter = keys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); try { if (!key.isValid()) { key.channel().close(); key.cancel(); continue; } handleKey(key); } catch (Exception e1) { e1.printStackTrace(); log.error(e1.getMessage()); } } } catch (Exception e) { e.printStackTrace(); log.error(e.getMessage()); } } } /** * 处理CONNECT事件 * * @param key * @throws Exception */ private void handleConnectEvent(SelectionKey key) throws Exception { log.info("*** connectable"); SocketChannel ch = (SocketChannel) key.channel(); ch.finishConnect(); key.interestOps(SelectionKey.OP_READ); } /** * 读取数据 * * @param key * @throws Exception */ private void handleReadEvent(SelectionKey key) throws Exception { log.info("*** readable"); key.cancel(); SocketChannel ch = (SocketChannel) key.channel(); RPCByteBuffer buffer = RPCByteBuffer.fromChannel(ch); ch.shutdownInput(); handleExecutor(ch, buffer); } /** * 测试此键的通道是否已准备好接受新的套接字连接 * 本项目中,应该是在Reactor中使用,这里不使用 * * @param key * @throws Exception */ private void handleAcceptEvent(SelectionKey key) throws Exception { log.error("*** acceptable, this is impossiable"); throw new Exception("no such event : accept"); } /** * 写事件等,暂时不使用 * * @param key * @throws Exception */ private void handleOtherEvent(SelectionKey key) throws Exception { log.error("*** not used"); throw new Exception("no such event : other"); } }

SocketHandler.java

SocketHandler负责对于服务器的方法执行操作,也是通过线程池来管理SocketHandler的:

// SocketHandler.java
package com.codelifeliwan.rpc.server.nio.reactor;

import com.codelifeliwan.rpc.core.RPCDefaultMessage;
import com.codelifeliwan.rpc.core.RPCStatus;
import com.codelifeliwan.rpc.core.serializer.MessageSerializer;
import com.codelifeliwan.rpc.server.config.BeanScope;
import com.codelifeliwan.rpc.server.config.ClassInfo;
import com.codelifeliwan.rpc.server.config.Configuration;
import com.codelifeliwan.rpc.core.RPCByteBuffer;
import com.google.gson.Gson;
import org.apache.log4j.Logger;

import java.lang.reflect.Method;
import java.nio.ByteBuffer;
import java.nio.channels.SocketChannel;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * @author LiWan
 * 

* 负责具体的消息序列化、方法调用等操作 */ public class SocketHandler implements Runnable { private static final Logger log = Logger.getLogger(SocketHandler.class); private Configuration configuration; private Map> beans; private RPCByteBuffer buffer; /** * Method的缓存 * key = beanName-methodName */ private static Map methodsCache = new ConcurrentHashMap<>(); /** * 消息会从该socket解析,channel.socket() * 并通过该socket写回消息,用完后关闭 */ private SocketChannel channel; public SocketHandler(Configuration configuration, SocketChannel channel, RPCByteBuffer buffer) { this.configuration = configuration; this.channel = channel; this.beans = configuration.getBeanClasses(); this.buffer = buffer; } @Override public void run() { MessageSerializer serializer = configuration.getMessageSerializer(); try { byte[] bytes = this.buffer.getByteArray(); RPCDefaultMessage fromMessage = (RPCDefaultMessage) serializer.unSerializeMessage(new String(bytes), null, null); if (!beans.containsKey(fromMessage.getBeanName())) { String warn = "unknown message : " + fromMessage.getBeanName(); log.error(warn); throw new Exception(warn); } ClassInfo bean = beans.get(fromMessage.getBeanName()); Object beanObj = null; if (bean.getScope() == BeanScope.SINGLETON) { // 单例模式 beanObj = bean.getDefaultObject(); } else { // 原型模式 beanObj = bean.getClazz().getConstructor().newInstance(); } // 实际方法调用处理过程, 这次重新序列化类型 RPCDefaultMessage response = processMessage(beanObj, fromMessage); // 将返回结果写回 String responseStr = serializer.serializeMessage(response); channel.write(ByteBuffer.wrap(responseStr.getBytes())); } catch (Exception e) { e.printStackTrace(); RPCDefaultMessage response = new RPCDefaultMessage(); response.setStatus(RPCStatus.GENERAL_ERRPR); response.setValue("error:" + e.getMessage()); try { String responseStr = serializer.serializeMessage(response); channel.write(ByteBuffer.wrap(responseStr.getBytes())); } catch (Exception ex) { ex.printStackTrace(); } } finally { try { channel.close(); } catch (Exception e) { e.printStackTrace(); log.error(e.getMessage()); } } } /** * 具体调用方法实现 * * @param bean 实例化的bean * @param message 客户端传来的消息 * @return * @throws Exception */ private RPCDefaultMessage processMessage(Object bean, RPCDefaultMessage message) throws Exception { String key = message.getBeanName() + "-" + message.getMethodName(); if (!methodsCache.containsKey(key)) { synchronized (SocketHandler.class) { if (!methodsCache.containsKey(key)) { Method[] methods = bean.getClass().getDeclaredMethods(); if (methods != null) { for (Method m : methods) { if (m.getName().equalsIgnoreCase(message.getMethodName())) { methodsCache.put(key, m); break; } } } } } } // 利用反射机制来实现方法调用 if (!methodsCache.containsKey(key)) throw new Exception("no such method : " + message.getMethodName()); Method method = methodsCache.get(key); RPCDefaultMessage response = new RPCDefaultMessage(); // 参数类型转化,避免因为json传输造成的类型不匹配问题 Gson gson = new Gson(); Object[] params = message.getParamValues(); if (params == null) params = new Object[0]; Class[] paramTypes = method.getParameterTypes(); if (paramTypes == null) paramTypes = new Class[0]; if (params.length != paramTypes.length) throw new Exception("method param(s) not match."); for (int i = 0; i < params.length; i++) { params[i] = gson.fromJson(gson.toJson(params[i]), paramTypes[i]); } response.setValue(method.invoke(bean, params)); return response; } }

欢迎不懂的小伙伴留言~

你可能感兴趣的:(【easy-rpc】二、优化日志:支持Reactor模式IO多路复用机制)