- 异步编程中的并发编程优化
AI天才研究院
架构师必知必会系列自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明什么是异步编程?为什么要异步编程?浅谈异步编程模型基于事件驱动的模型基于消息队列的模型基于协程的模型为什么要进行并发优化?3.基本算法原理和具体操作步骤1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7.缓存8.异步框架9.模型选择4.具体代码实例和解释说明模块划分1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7
- 一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.2.1GPU加速3.2.2ASIC加速3.2.3FPGA加速3.3算法优缺点GPUASICFPGA3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过
- 位图思想详解:用一个小小的比特征服整个世界
Joseit
优选算法java算法
位图思想详解:用一个小小的比特征服整个世界一、什么是位图?二、位图的形象理解三、位图的Java实现四、位图的算法原理剖析五、实际应用案例:网站用户活跃度统计五、真实的应用场景:布隆过滤器的基础六、算法题:判断字符是否唯一(easy)一、什么是位图?位图是一种超级节省空间的数据结构,他利用二进制位(0/1)来表示某个元素是否存在或某种状态是否为真。想象一下,用一个小小的比特位就能记录一个信息,这简直
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- 机器学习中的贝叶斯网络:如何构建高效的风险预测模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录机器学习中的贝叶斯网络:如何构建高效的风险预测模型1.背景介绍2.基本概念术语说明2.1马尔科夫随机场(MarkovRandomField)2.2条件随机场(ConditionalRandomField,CRF)2.3变量elimination算法2.4贝叶斯网络3.核心算法原理和具体操作步骤以及数学公式讲解3.1原理介绍1.贝叶斯网络基础2.贝叶斯网络构建风险
- Caffeine vs Guava Cache:性能巅峰对决,谁才是 Java 本地缓存之王?
Julian.zhou
Java开发基础技能缓存java算法
CaffeinevsGuavaCache:性能巅峰对决,谁才是Java本地缓存之王?导语:在Java本地缓存的战场上,Caffeine和GuavaCache是开发者最常用的两大神器。但究竟谁的性能更胜一筹?为何Caffeine被称为“GuavaCache的终结者”?本文通过算法原理、并发性能、内存管理、实战测试四大维度,彻底揭秘两者的性能差异,文末附迁移指南和选型建议!一、核心差异:算法与淘汰策略
- 基于Python的智能决策支持系统:实现智能化决策的关键要素
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录基于Python的智能决策支持系统:实现智能化决策的关键要素11.背景介绍2.核心概念与联系数据收集与预处理模型构建与训练决策规则生成与优化决策结果评估与反馈3.核心算法原理具体操作步骤数据挖掘算法机器学习算法优化算法4.数学模型和公式详细讲解举例说明线性回归模型最小二乘法5.项目实践:代码实例和详细解释说明6.实际应用场景金融领域医疗领域供应链管理智能制造7.工具和资源推荐编程语言和开发
- AI 大模型应用数据中心的数据清洗工具
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
1.背景介绍在人工智能大模型应用的浪潮中,数据清洗作为数据预处理的重要环节,对于提升模型性能和可靠性具有至关重要的作用。数据中心作为人工智能模型的运行环境,面临着海量数据流和多样化的数据类型,如何高效、准确地进行数据清洗,成为应用大模型的关键问题之一。本文将详细介绍AI大模型应用数据中心的数据清洗工具,包括核心概念、算法原理、具体操作步骤、应用场景等,旨在为AI大模型的实际应用提供参考。2.核心概
- 芒格的“思维格栅“:构建全面的投资分析框架
AGI大模型与大数据研究院
DeepSeekai
芒格的"思维格栅":构建全面的投资分析框架关键词:芒格、思维格栅、投资分析框架、跨学科思维、投资决策摘要:本文深入探讨了芒格的“思维格栅”理论及其在构建全面投资分析框架中的应用。首先介绍了“思维格栅”理论的背景和重要性,接着阐述了其核心概念与联系,包括跨学科思维的原理和架构。通过详细讲解核心算法原理和具体操作步骤,结合数学模型和公式进行举例说明,帮助读者理解如何运用这一理论进行投资分析。随后通过项
- 基于协同过滤推荐算法的景点票务数据系统(python-计算机毕设)
计算机程序设计(接毕设)
推荐算法机器学习毕业设计python人工智能
摘要IABSTRACTII第1章引言1研究背景及意义1研究背景1研究意义1国内外研究现状2智慧旅游3旅游大数据3研究内容4本章小结4第2章相关技术概述5基于内容的推荐算法5基于内容的推荐算法原理5基于内容的推荐算法实现5协同过滤推荐算法6协同过滤算法原理6协同过滤算法实现7SpringBoot框架9SpringBoot简介9SpringBoot特性10SpringBoot工作原理10Vue.js框
- HarmonyOS开发,A持有B,B引用A的场景会不会导致内存泄漏,代码示例告诉你答案
MardaWang
HarmonyOSNEXTOpenHarmonyharmonyos华为
问题:A持有B,B引用A的场景会不会导致内存泄漏?答案:方舟虚拟机的内存管理和GC采用的是根可达算法,根可达算法可以解决循环引用问题,不会导致A引用B,B引用A的内存泄漏。根可达算法原理根可达算法以一系列被称为“根对象”(如栈中的局部变量、静态变量等)作为起始点,从这些根对象开始向下搜索,能够被搜索到的对象被认为是可达对象,而那些无法被搜索到的对象则被判定为不可达对象,会在垃圾回收时被清理。所以,
- 【优化选址】基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究(Matlab代码实现)
荔枝科研社
matlab数据结构算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究一、引言二、海上救援选址多目标优化问题分析(一)成本因素(二)救援时间因素(三)可靠性因素三、多目标遗传NSGAII算法(一)算法原理(二)在
- 蓝桥杯Python赛道备赛——Day6:算术(二)(数学问题)
SKY YEAM
蓝桥杯备赛蓝桥杯python职场和发展
本期博客是蓝桥杯备赛中算术(数学问题)的第二期,包括:快速幂算法、逆元(模意义下的倒数)、组合数计算和排列数计算。每一种数学问题都在给出定义的同时,给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法算术(二)(数学问题)一、快速幂算法二、逆元(模意义下的倒数)三、组合数计算四、排列数计算一、快速幂算法1.定义:快速计算大指数幂的算法。2.算法原理:二进
- 量子计算+AI:未来AI Agent的计算范式
AI天才研究院
计算ChatGPTDeepSeekRL强化学习agentagi推理模型智能驾驶
量子计算+AI:未来AIAgent的计算范式关键词:量子计算,人工智能,AIAgent,量子算法,量子机器学习,量子优化,量子数据处理摘要:量子计算和人工智能(AI)的结合正在改变AIAgent的计算范式。通过量子计算的超强算力和独特性质,AIAgent在数据处理、算法优化和决策能力方面展现出巨大潜力。本文将详细探讨量子计算与AI结合的核心概念、算法原理、系统架构,并通过实际案例展示量子AIAge
- 芒格的“清晰思考“方法在量子计算商业模式设计中的应用
AGI大模型与大数据研究院
DeepSeek量子计算网络运维ai
芒格的"清晰思考"方法在量子计算商业模式设计中的应用关键词:芒格、清晰思考方法、量子计算、商业模式设计、应用策略摘要:本文聚焦于将芒格的“清晰思考”方法应用于量子计算商业模式设计。首先介绍了背景信息,包括目的范围、预期读者等。接着阐述了核心概念,如“清晰思考”方法和量子计算商业模式的原理及联系,并给出相应示意图和流程图。详细讲解了核心算法原理及操作步骤,结合数学模型和公式进行说明。通过项目实战案例
- 思维链在可控核聚变等离子体控制中的应用:AI驱动的能源革命
AI大模型应用之禅
DeepSeek人工智能能源ai
概述《思维链在可控核聚变等离子体控制中的应用:AI驱动的能源革命》旨在探讨AI技术在可控核聚变等离子体控制中的实际应用,以及如何通过思维链实现能源革命。本文将从以下几个方面展开讨论:核聚变等离子体控制背景、思维链技术介绍、AI在等离子体控制中的应用、算法原理与实现、系统设计与实现、项目实战以及最佳实践与展望。一、核聚变等离子体控制背景核聚变是一种通过将轻原子核在高温高压下聚合成更重的原子核,释放出
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- 3.0 二分查找算法:二分查找算法简介
熊峰峰
#1.每日练习算法数据结构c++二分查找
二分查找算法简介一、算法定义二、算法原理三、示例分析四、C++实现五、关键注意事项六、适用场景与局限性七、二分查找的三大模板1.朴素的二分模板2.查找左边界的二分模板3.查找右边界的二分模板4.关键对比与总结一、算法定义二分查找(BinarySearch)是一种在有序数组中快速查找目标元素的算法。其核心思想是通过分治策略不断缩小搜索范围,时间复杂度为O(logn),效率远高于线性查找(O(n))。
- AI人工智能中的概率论与统计学原理与Python实战:Python实现概率模型
AI天才研究院
AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的不断发展,概率论与统计学在人工智能领域的应用越来越广泛。概率论与统计学是人工智能中的基础知识之一,它们在机器学习、深度学习、自然语言处理等领域都有着重要的作用。本文将介绍概率论与统计学的核心概念、算法原理、具体操作步骤以及Python实现方法,并通过具体代码实例进行详细解释。2.核心概念与联系2.1概率论与统计学的区别概率论是一门数学学科,它研究随机事件发生的可能性。
- 使用Python实现无人机路径规划的灰狼优化算法
闲人编程
pythonpython无人机算法灰狼优化路径规划
目录使用Python实现无人机路径规划的灰狼优化算法引言1.灰狼优化算法概述1.1定义1.2算法原理1.3灰狼的狩猎策略1.4算法步骤2.Python中的灰狼优化算法实现2.1安装必要的库2.2定义类2.2.1灰狼类2.2.2群体类2.2.3路径规划类2.3示例程序3.灰狼优化算法的优缺点3.1优点3.2缺点4.改进方向5.应用场景结论使用Python实现无人机路径规划的灰狼优化算法引言无人机的路
- 数据结构Python版---生成螺旋矩阵(Day5)
圆嘟嘟2019
数据结构Python版python算法开发语言leetcode数据结构
文章目录1.1⭐算法原理:1.2连续数组长度1.1⭐算法原理:生成螺旋矩阵原理:通过模拟矩阵填充来解决,像蜗牛的螺旋一样,从外往里旋。1.2连续数组长度给定一个正整数n,生成一个包含1到n^2所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。示例1:输入:3输出:[[1,2,3],[8,9,4],[7,6,5]]通过模拟矩阵填充的过程来解决,使用四个变量top、bottom、left、right来
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- AUTOSAR从入门到精通-汽车电子电气架构(EEA)
格图素书
汽车
目录前言算法原理EEA发展历程->分布式架构(distributed):->基于域的集中式架构(DCUbasedcentralized):->基于域融合的带状架构(DCUfusionbasedzonal):什么是电子电气架构?EEA的特点EEA发展的三大阶段特征第一阶段:分布式架构第二阶段:基于域的集中式架构(转型中)第三阶段:基于域融合的带状架构(未来趋势)车载电子电气架构作用EEA开发工作内容
- 2280将数组和减少的最少操作次数(贪心算法) 分析+源码+证明
懒羊羊大王&
算法(贪心算法)c++(初阶)贪心算法算法
题目解析请你返回将nums数组和至少减少一半的最少操作数。这句话相当于最后数组和小于等于最开始数组和的一半。1.1算法原理解法:贪心+大根堆(堆顶为最大值)具体策略:每次挑选数组中最大的数,进行减半,直到数组和减少到至少一半为止。举例:初始nums的和为5+19+8+1=33。以下是将数组和减少至少一半的一种方法:选择数字19并减小为9.5。选择数字9.5并减小为4.75。选择数字8并减小为4。最
- 【贪心算法】将数组和减半的最小操作数
I_Am_Me_
贪心算法贪心算法算法
1.题目解析2208.将数组和减半的最少操作次数-力扣(LeetCode)2.讲解算法原理使用当前数组中最大的数将它减半,,直到数组和减小到一半为止,从而快速达到目的重点是找到最大数,可以采用大根堆快速达到目的3.代码classSolution{publicinthalveArray(int[]nums){PriorityQueueheap=newPriorityQueueb.compareTo(
- LVS、Haproxy、Nginx区别
SHISHIZHIZHI
nginx负载均衡服务器
LVS、Haproxy、Nginx区别一、Haproxy调度算法1.常见的web集群调度器2.Haproxy应用分析3.Haproxy调度算法原理4.Haproxy的主要特性5.Haproxy的优点6、LVS.Haproxy、Nginx区别二、Haproxy优化三、Haproxy日志1.修改主配置文件2.修改rsyslog配置一、Haproxy调度算法1.常见的web集群调度器目前常见的web集群
- 深入理解 OTSU 算法(大津法——最大类间方差法)
ZHauLee
机器学习算法计算机视觉人工智能
一、算法概述OTSU算法是一种用于图像分割的自动阈值选择算法,广泛应用于图像处理领域,特别是在二值化过程中。它是由日本学者大津展之(NobuyukiOtsu)在1979年提出,因此得名“OTSU算法”。二、算法原理OTSU算法的核心思想是通过遍历所有可能的阈值,将图像分割为前景(目标)和背景两部分,使得这两部分之间的类内方差(intra-classvariance)最小,或者说使得这两部分之间的类
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- C++回文自动机
总斯霖
c++算法
算法原理节点结构:每个节点代表一个回文子串。包含长度len、失败指针fail和子节点转移trans。双根结构:偶根(0号节点):长度为0,处理偶数长度回文。奇根(1号节点):长度为-1,处理奇数长度回文。构建过程:逐个字符处理,维护当前最长回文后缀节点last。对于新字符,沿last的失败链找到可扩展的节点,创建新节点并更新指针。失败指针:类似AC自动机,用于在无法扩展时跳转到其他回文后缀。C++
- LeetCode刷题 -- 贪心(一)
英雄不问出处~
题解leetcode算法职场和发展
目录柠檬水找零题目解析算法原理代码证明方法柠檬水找零题目链接题目解析柠檬水5块一杯(如果顾客给你5块你就收下)顾客是排队来购买的(只能按顺序找零)并且最开始你手里是没有钱的算法原理1.给5块钱,收下2.给10块钱,找5块钱或者没有5块钱可找3.给20块钱,优先考虑找5块钱和10块钱,这种最优,因为5块钱是最有用的,比如[20,10]你现在有三个5块,1个10块,第二种找10,5第二次还可以找5块钱
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc