- 【激活函数总结】Pytorch中的激活函数详解: ReLU、Leaky ReLU、Sigmoid、Tanh 以及 Softmax
阿_旭
深度学习知识点pytorch人工智能python激活函数深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 深度学习与遗传算法的碰撞——利用遗传算法优化深度学习网络结构(详解与实现)
2401_84003733
程序员深度学习人工智能
self.model.add(layers.Dense(10,activation=‘relu’))self.model.build(input_shape=(4,28*28))self.model.summary()self.model.compile(optimizer=optimizers.Adam(lr=0.01),loss=losses.CategoricalCrossentropy(f
- pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan
加速却甩不掉伤悲
pytorch神经网络人工智能
记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan1.首先loss值是正常数值;2.查了好多网上的解决办法:检查原始输入神经网络数据有没有nan值,初始化权重参数,使用relu激活函数,梯度裁剪,降低优化器的学习率等等都没解决,个人认为这些应该影响不大,一般不会出问题;3.最后是使用如下异常检测:检测在loss回传过程中哪一块出现了问题torch.autog
- 3.关于Detr
安逸sgr
Transformer计算机视觉目标检测transformer
关于Detr模型架构总体架构classTransformer(nn.Module):def__init__(self,d_model=512,nhead=8,num_encoder_layers=6,num_decoder_layers=6,dim_feedforward=2048,dropout=0.1,activation="relu",normalize_before=False,retur
- 深度学习(一)
小泽爱刷题
深度学习人工智能
稀疏激活是ReLU函数的一个重要特性,它使得在前向传播和反向传播过程中,网络的计算变得更加高效。大多数神经元的激活值为0可以减少计算和存储开销,从而提高训练效率。sigmoid适用于常用于二分类任务的输出层,因为它能将输出值压缩到[0,1]之间,表示概率值。非零均值:输出值总是非零,这可能会导致训练过程中较慢的收敛。梯度消失问题:当输入值很大或很小时,梯度接近于0,导致训练过程中梯度更新变得缓慢。
- Python在神经网络中优化激活函数选择使用详解
Rocky006
python开发语言
概要在神经网络中,激活函数扮演着至关重要的角色。它的主要作用是引入非线性因素,使得神经网络能够处理复杂的非线性问题。如果没有激活函数,神经网络仅仅是线性模型的堆叠,无法胜任深度学习中的各种任务。本文将深入探讨几种常用的激活函数,包括Sigmoid、Tanh、ReLU及其变种,并通过具体的代码示例展示它们在Python中的实现和应用。激活函数的重要性激活函数将输入信号进行非线性转换,从而增强神经网络
- YOLOv9网络框架
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
#YOLOv9#parametersnc:80#numberofclassesdepth_multiple:1.0#modeldepthmultiplewidth_multiple:1.0#layerchannelmultiple#activation:nn.LeakyReLU(0.1)#activation:nn.ReLU()#anchorsanchors:3#YOLOv9backbonebac
- Keras深度学习库的常用函数与参数详解及实例
零 度°
pythonpythonkeras
Keras是一个高级的神经网络API,它能够以TensorFlow、CNTK或Theano作为后端运行,以支持快速的实验和模型构建。Keras以其用户友好、模块化、可扩展性而受到广泛欢迎,适用于从深度学习新手到经验丰富的研究人员。常用函数及其参数Dense()全连接层,用于构建神经网络中的线性部分。units:层中的神经元数量。activation:激活函数,默认为’relu’。use_bias:
- 170基于matlab的DNCNN图像降噪
顶呱呱程序
matlab工程应用matlab开发语言图像降噪处理DNCNN
基于matlab的DNCNN图像降噪,网络分为三部分,第一部分为Conv+Relu(一层),第二部分为Conv+BN+Relu(若干层),第三部分为Conv(一层),网络层数为17或者20层。网络学习的是图像残差,也就是带噪图像和无噪图像差值,损失函数采用的MSE。程序已调通,可直接运行。170matlabDNCNN图像降噪处理(xiaohongshu.com)
- ReLU和ReLU6
chen_znn
激活函数pytorch深度学习人工智能计算机视觉
ReLU和ReLU6都是深度学习中常用的激活函数,它们各自有不同的优缺点。ReLU(RectifiedLinearUnit)优点非线性:ReLU是一个非线性函数,能够帮助神经网络学习复杂的模式和特征计算简单:ReLU函数的计算速度快,只需要判断输入是否大于零,因此在实践中被广泛采用解决梯度消失问题:相比于一些传统的激活函数,ReLU对梯度消失问题有一定的缓解作用缺点神经元死亡问题:当输入值为负时,
- 如何使用Python绘制常见的几种激活函数?
神笔馬良
python开发语言
问题描述:如何使用Python绘制常见的几种激活函数?(sigmoid、Tanh、Relu、LeakyRelu、ELU、Softplus、Softmax、Smish)解答:这里八种不同的激活函数,使用了不同的颜色进行了绘制。#importpandasaspd#fromscipyimportstatsimportmathimportmatplotlib.pyplotaspltimportnumpya
- 深度学习图像算法工程师--面试准备(1)
小豆包的小朋友0217
深度学习算法人工智能
1请问人工神经网络中为什么ReLU要好过于tanh和Sigmoidfunction?采⽤Sigmoid等函数,算激活函数时(指数运算),计算量⼤,反向传播求误差梯度时,求导涉及除法和指数运算,计算量相对⼤,⽽采⽤ReLU激活函数,整个过程的计算量节省很多。对于深层⽹络,Sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在Sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信
- 用tensorflow模仿BP神经网络执行过程
Phoenix Studio
深度学习tensorflow神经网络人工智能
文章目录用矩阵运算仿真BP神经网络y=relu((X․W)+b)y=sigmoid((X․W)+b)以随机数产生Weight(W)与bais(b)placeholder建立layer函数改进layer函数,使其能返回w和bgithub地址https://github.com/fz861062923/TensorFlow用矩阵运算仿真BP神经网络importtensorflowastfimportn
- 神经网络和TensorFlow
异同
逻辑斯蒂分类模型几个关键值加权输入f(x)=(w1x1+w2x2+...+wnn)+b或扩展为f(x)=(w0x0+w2x2+...+wnn),其中w0=b,x0=1激活值a(activation)=delta(f),delta为激活函数,一般可选择sigmoid、relu、tanh、leak_relu等等sigmoid激活函数sigmoid(x)=1/(1+e^-x)性质输出在0-1之间在-6至
- 猫头虎分享已解决Bug || ImportError: cannot import name ‘relu‘ from ‘keras.layers‘
猫头虎-人工智能
已解决的Bug专栏人工智能bugtensorflow人工智能neo4j深度学习数据挖掘神经网络
博主猫头虎的技术世界欢迎来到猫头虎的博客—探索技术的无限可能!专栏链接:精选专栏:《面试题大全》—面试准备的宝典!《IDEA开发秘籍》—提升你的IDEA技能!《100天精通鸿蒙》—从Web/安卓到鸿蒙大师!《100天精通Golang(基础入门篇)》—踏入Go语言世界的第一步!《100天精通Go语言(精品VIP版)》—踏入Go语言世界的第二步!领域矩阵:猫头虎技术领域矩阵:深入探索各技术领域,发现知
- 非线性回归的原理与实现
o0Orange
回归数据挖掘人工智能
1.激活函数:激活函数是为了让神经网络可以拟合复杂的非线性函数,比如torch.nn.functional.relu()2.人工神经网络是多层人工神经元组成的网络结构,输入层,隐含层,输出层3,隐含层大于2的神经网络,都可以叫深度神经网络。importtorchimportmatplotlib.pyplotaspltfromtimeimportperf_counter#增加一个维度100000行1
- MIT-BEVFusion系列七--量化3 稀疏卷积、普通卷积BN融合,fusebn
端木的AI探索屋
自动驾驶python算法人工智能目标检测
目录稀疏卷积和BN的融合当前模块属于SparseSequential并且第一个子模块属于SparseConvolution时,走165行的分支。当前模块属于SparseBasicBlock当前模块属于ReLU2D卷积和BN的融合当前模块的子类属于SyncBatchNorm或不同维度的BatchNorm或LazyBatchNorm当前模块的子类属于Conv2d或者QuantConv2d不是以上两种情
- 序贯Sequential模型
光光小丸子
通过向Sequential模型传递一个layer的list来构造该模型model=Sequential([Dense(32,input_shape=(784,)),Activation('relu'),Dense(10),Activation('softmax'),])model.compile(optimizer='rmsprop',loss='categorical_crossentropy'
- 深度学习笔记
stoAir
深度学习笔记人工智能
DeepLearningBasic神经网络:algorithm1input1outputinput2input3input4algorithm2监督学习:1个x对应1个y;Sigmoid:激活函数sigmoid=11+e−xsigmoid=\frac{1}{1+e^{-x}}sigmoid=1+e−x1ReLU:线性整流函数;##LogisticRegression-->binaryclassif
- pytorch常用激活函数笔记
守护安静星空
pytorch笔记人工智能
1.relu函数:公式:深层网络内部激活函数常用这个importmatplotlib.pyplotaspltdefrelu_fun(x):ifx>=0:returnxelse:return0x=np.random.randn(10)y=np.arange(10)plt.plot(y,x)fori,tinenumerate(x):x[i]=relu_fun(t)plt.plot(y,x)2.sigm
- 深度学习图像分类相关概念简析+个人举例3(CNN相关补充,附详细举例代码1)
是lethe先生
深度学习分类cnn
【1】激活函数(ActivationFunction):在深度学习(CNN)中,激活函数用于引入非线性性质,帮助模型学习复杂的关系。常见的激活函数有ReLU、Sigmoid和Tanh等。(1)ReLU激活函数:ReLU函数将负输入值变为零,保留正输入值不变。公式为(2)Sigmoid激活函数:Sigmoid函数将任意实数映射到0到1之间。公式为(3)Tanh激活函数:Tanh函数将任意实数映射到-
- 原始数据经过卷积层conv,批归一化层BatchNorm1d,最大池化层MaxPool1d,后数据的形状会发生什么样的改变?
小桥流水---人工智能
机器学习算法Python程序代码深度学习人工智能
这里写目录标题1.我的模型结构是这样的:2.每一层数据形状的变化:3.修改意见1.我的模型结构是这样的:self.model1=nn.Sequential(nn.Conv1d(1,8,1),nn.BatchNorm1d(8),nn.ReLU(),nn.MaxPool1d(2),nn.Conv1d(8,32,1),nn.BatchNorm1d(32),nn.ReLU(),nn.MaxPool1d(2
- stupid_brain
MORE_77
深度学习深度学习python人工智能
前言:本文用于记录本人AI新手期间犯的各种错误,时常更新。正文开始:读取数据的num_worker设置过少,以至于训练速度卡在读取数据上。训练集数据处理:数据增强有利于解决过拟合问题。模型:relu少写、batchnorm位置写错。test记得关闭梯度更新withtorch.no_grad():
- 激活函数:logistic、Tanh、Relu、leaky relu、ELU的图像及python绘制代码
数学不分析
python计算机视觉深度学习神经网络图像处理
#绘制激活函数代码importnumpyasnpimportmatplotlib.pyplotasplt#定义激活函数deflogistic(x):return1/(1+np.exp(-x))deftanh(x):returnnp.tanh(x)defrelu(x):returnnp.maximum(0,x)defleaky_relu(x,alpha=0.01):returnnp.where(x>
- 常用激活函数代码+图像
菜鸟向前冲fighting
机器学习pytorch神经网络深度学习机器学习python
文章目录常见激活函数1.ReLu函数2.Sigmoid函数3.tanh函数4.总结常见激活函数如下图所示,在神经元中,输入的inputs通过加权,求和后,还被作用了一个函数,这个函数就是激活函数。引入激活函数是为了增加神经网络模型的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。%matplotlibinlineimporttorchimportnump
- 深度学习中常用的激活函数
DeepDriving
自动驾驶与深度学习深度学习机器学习人工智能
文章目录前言常用的几种激活函数1Sigmoid激活函数2Tanh激活函数3ReLU激活函数4LeakyRelu激活函数5PRelu激活函数6ELU激活函数7SELU激活函数8Swish激活函数9Mish激活函数如何选择合适的激活函数参考资料前言在人工神经网络中,激活函数扮演了非常重要的角色,其主要作用是对所有的隐藏层和输出层添加一个非线性的操作,使得神经网络的输出更为复杂、表达能力更强。试想一下如
- [CUDA手搓]从零开始用C++ CUDA搭建一个卷积神经网络(LeNet),了解神经网络各个层背后算法原理
Bartender_Jill
Graphics图形学笔记神经网络c++cnn性能优化vscode
文章目录前言一、所需环境二、实现思路2.1.定义了LeNet网络模型结构,并训练了20次2.2以txt格式导出训练结果(模型的各个层权重偏置等参数)2.3(可选)以pth格式导出训练结果,以方便后期调试2.4C++CUDA要做的事三、C++CUDA具体实现3.1新建.cu文件并填好框架3.2C++实现各网络层3.0CUDA编程核心思路3.1卷积层Conv13.2激活函数ReLu13.2池化层Max
- Python绘制神经网络中常见激活函数的图形
水木的编程那些事儿
Python学习
前言需要绘制的激活函数有sigmoid,tanh,ReLU,softplus,swish共5个函数。各个函数的公式sigmoid:tanh:ReLU:softplus:swish:其中(⋅)为Logistic函数,β为可学习的参数或一个固定超参数上面5个激活函数对应的代码公式如下:defsigmoid(x):return1/(1+np.exp(-x))deftanh(x):return(np.ex
- 神经网络激活函数的选择
Peyzhang
神经网络深度学习
激活函数(Activationfunctions)对于人工神经网络模型去学习、理解非常复杂和非线性的函数来说具有十分重要的作用。它们将非线性特性引入到我们的网络中。简单的说激活函数就是将函数的输出映射到我们希望的范围,而不只是线性的输出。这里我们讲下面几种常见激活函数,Sigmoid、tanh、ReLU、LeakyReLU,图像如下:Sigmoid函数在逻辑回归中常用Sigmoid作为激活函数定义
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb