- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- python股票分析系统部署操作过程及代码实现
大懒猫软件
python开发语言flaskplotlyapirestful
部署一个股票分析系统涉及多个步骤,包括后端服务、前端界面和实时数据更新。以下是一个详细的部署过程,涵盖从代码编写到服务器部署的完整步骤。1.系统架构概述后端:使用Flask提供RESTfulAPI和数据处理服务。前端:使用PlotlyDash构建动态界面,实时显示股票价格走势。数据源:从金融数据API(如AlphaVantage、YahooFinance)获取实时数据。2.系统开发步骤2.1安装必
- 运用python制作一个完整的股票分析系统
大懒猫软件
python开发语言djangobeautifulsoup
使用python制作一个股票分析系统,可以通过股票价格走势动态界面,实时动态监测不同类型股票的变化情况。以下是一个完整的股票分析系统开发指南,包括股票价格走势动态界面和实时监测功能。这个系统将结合网络爬虫、数据分析、机器学习和可视化技术,帮助你实时监测不同类型股票的变化情况。1.系统功能概述数据采集:使用网络爬虫技术从财经网站采集股票数据。数据处理:计算技术指标(如KDJ、BOLL)并进行数据预处
- 【LLM】大模型基础--大规模预训练语言模型的开源教程笔记
Langchain
笔记人工智能langchainllama大模型产品经理大模型基础
1.引言本文以DataWhale大模型开源教程为学习路线,进行一整个大模型的入门操作什么是语言模型语言模型是一种对词元序列(token)的概率分布,可以用于评估文本序列的合理性并生成新的文本。从生成文本的方式来看,LM(languagemodle)可以简单的分为:自回归模型非自回归模型特点逐字生成文本,每个词的生成都依赖于上文,关联性好一次性生成整个文本序列,不捕捉上文信息优点内容质量高生成速度快
- 基于顺序存储结构的图书信息表的创建和输出
木制品123
数据结构数据结构算法
1、基于顺序存储结构的图书信息表的创建和输出描述定义一个包含图书信息(书号、书名、价格)的顺序表,读入相应的图书数据来完成图书信息表的创建,然后统计图书表中的图书个数,同时逐行输出每本图书的信息。输入输入n+1行,其中前n行是n本图书的信息(书号、书名、价格),每本图书信息占一行,书号、书名、价格用空格分隔,价格之后没有空格。最后第n+1行是输入结束标志:000(空格分隔的三个0)。其中书号和书名
- 心理测评性格测试矩阵版h5微信抖音QQ快手小程序app开源版开发
云起SAAS
矩阵微信小程序
心理测评性格测试矩阵版h5微信抖音QQ快手小程序app开源版开发支持SAAS、支持独立加密、支持独立开源、价格不同。自带题库数据,后台一键初始,支持自己上传题目心理测评微信公众号微信小程序抖音小程序可打包APP支持单题、跳跃题、计分题、因子题、单选多选等99%题型这是一款什么软件?从智力、能力、人格、心理健康等各方面对个体进行全面的描述,从而确定其相对优势和不足。对心理从业者及人力资源从业者而言,
- Hugging Face 机器人技术新突破
人工智能机器人
https://www.bilibili.com/video/BV1WJkVYdEq7/?aid=113663474205...这次我们的LeRobot团队联合@therobotstudio和@NepYope打造了全新腱驱动(Tendon-driven)技术,以快、更准、更灵活的超凡表现,让机器人手部控制进入全新时代!当前该机器手的自由度:手部16,手臂7。机器手价格不超过450美元最让人激动的是
- 2025游戏行业的趋势预测
疯子的游戏梦
游戏行业的理解游戏
一、市场现状从总产值的角度来看,游戏总产值的增长率已经放缓,由增量市场转化为存量市场,整体的竞争强度将会加大,技术水平不强(开发技术弱、产品品质低、开发效率低)的公司将会面临更大的生存的困难。从表现形式的角度来看,从2003年端游的兴起,到2015年移动游戏的兴起,游戏形式会随着设备的更迭而产生新的形式,在2025年-2030年,本人预测随着VR、AR设备的成熟(价格更低、性能更好、外形更小),游
- 【OSTEP】操作系统导论-精翻讲解:第五章-进程API
Refulic.
linux运维服务器
写在前面:学习操作系统是一个漫长且容易迷茫的过程。这本书在我的学习过程中给予了很大的帮助。本文将尽量精简内容,仅保留关键部分,并对学习中遇到的难点进行注释和解释。希望这能为初学者提供一些帮助和指引。本文所有涉及的图片及内容皆引用自:OperatingSystems:ThreeEasyPieces作者:RemziH.Arpaci-DusseauandAndreaC.Arpaci-Dusseau(Un
- AIMv2:多模态自回归预训练的视觉新突破
人工智能
AIMv2:多模态自回归预训练的视觉新突破阅读时长:19分钟发布时间:2025-02-17近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】导言视觉模型在人工智能领域的地位愈发重要,从图像识别、目标检测到多模态理解,其应用场景不断拓展。在大规模数据集上进行预训练,能助力模型学习丰富的视觉特
- Flink在指定时间窗口内统计均值,超过阈值后报警
小的~~
flink均值算法大数据
1、需求统计物联网设备收集上来的温湿度数据,如果5分钟内的均值超过阈值(30摄氏度)则发出告警消息,要求时间窗口和阈值可在管理后台随时修改,实时生效(完成当前窗口后下一个窗口使用最新配置)。物联网设备的数据从kafka中读取,配置数据从mysql中读取,有个管理后台可以调整窗口和阈值大小。2、思路使用flink的双流join,配置数据使用广播流,设备数据使用普通流。3、实现代码packagecu.
- 京东详情 API 接口有什么应用与价值?
前端后端运维数据挖掘api
在电商行业蓬勃发展的今天,数据成为了驱动业务增长和创新的核心要素。京东作为国内知名的电商巨头,拥有海量的商品资源和丰富的业务数据。京东详情API接口就像是一把钥匙,为开发者、商家以及数据分析师打开了通往这些宝贵数据的大门。通过该接口,我们能够获取到京东平台上商品的详细信息,包括商品描述、价格、库存、评价等,这些数据在电商业务的各个环节都具有不可估量的应用价值。本文将深入探讨京东详情API接口的应用
- 告别高价低效采购,进销存询价单来破局
雪兽软件
科技前沿ERP系统进销存软件订单日记询价单
在企业运营过程中,采购环节是成本控制与资源获取的关键节点。而进销存软件(如订单日记)中的询价单功能,正悄然改变着企业的采购管理模式,为企业发展带来诸多显著好处。一、高效获取市场价格信息传统采购询价,需采购人员逐个联系供应商,耗时费力。有了进销存软件的询价单功能,企业能一键向多家供应商发送询价需求,短时间内即可收到详尽报价。比如一家制造企业要采购一批原材料,使用询价单功能,几小时内就能获取数十家供应
- 从Paxos到Zookeeper笔记1——第一章:分布式架构
半臻(火白)
分布式大数据zookeeper
第1章:分布式架构将多台机器组成分布式的处理方式越来越收到业界的青睐。1.1从集中式到分布式由于大型主机拥有卓越的性能和良好的稳定性,在单机处理方面优势非常明显。但是随着计算机系统向网络化和微型化的方向发展,传统的集中式处理越来越不适应人们的需求。大型主机的缺点:(1)操作难度大。(2)价格昂贵(3)虽然大型主机稳定,但是一旦出现故障后果严重(4)扩容非常困难阿里提出的“去IOE”运动,让计算和存
- GPT-4o mini 大模型价格战,一百万 Token 只需要 1.1元 RMB
简简单单OnlineZuozuo
m1Python领域m4杂项GPT-4ominiChatGPTChatGPT4.0大模型LLM
本心、输入输出、结果文章目录GPT-4omini大模型价格战,一百万Token只需要1.1元RMB前言目前它的定价方案是每处理一百万个token仅需15美分GPT-4omini极快的响应速度GPT-4omini大模型价格战,一百万Token只需要1.1元RMB编辑|简简单单Onlinezuozuo地址|https://blog.csdn.net/qq_15071263如果觉得本文对你有帮助,欢迎点
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 递归消除特征法RFE筛选特征-包装法-特征选择-特征降维
糯米君_
预处理机器学习python人工智能
RFE(Recursivefeatureelimination):递归消除特征法使用一个基模型(这里使用逻辑回归)来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。RFE的具体步骤如下:1、初始的特征集为所有可用的特征。2、使用当前特征集进行建模,然后计算每个特征的重要性。3、删除最不重要的一个(或多个)特征,更新特征集。4、跳转到步骤2,直到完成所有特征的重要性
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- Python随机森林算法详解与案例实现
闲人编程
python算法python随机森林数据分析人工智能
目录Python随机森林算法详解与案例实现1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1数据集介绍4.2代码实现4.3代码解释4.4运行结果5、回归案例:使用随机森林预测波士顿房价5.1数据集介绍5.2代码实现5.3代码解释5.4运行结果6、随机森林的优缺点7、改进方向8、应用场景9、总结Python随机森林算法详解与案例实现1、随机森林算法概述随
- C++自研游戏引擎-碰撞检测组件-八叉树AABB检测算法实现
千年奇葩
三维引擎c++人工智能算法八叉树
八叉树碰撞检测是一种在三维空间中高效处理物体碰撞检测的算法,其原理可以类比为一个管理三维空间物体的智能系统。这个示例包含两个部分:八叉树部分用于宏观检测,AABB用于微观检测。AABB可以更换为均值或节点检测来提高检测精度。八叉树的构建确定根节点范围首先要为整个碰撞检测系统确定一个初始范围,这就像是为所有参与碰撞检测的物体划定一个“活动区域”。这个范围是一个能够完全容纳所有待检测物体的三维立方体空
- 券商api有哪些用途?如何申请和使用券商api进行股票交易?
股票程序化交易接口
量化交易股票API接口Python股票量化交易大数据券商api股票交易申请使用股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>自动化交易功能券商API允许投资者编写程序来实现自动化交易。在股票市场中,价格波动瞬息万变,人工交易可能会因为反应速度慢而错过最佳交易时机。通过自动化交易程序,利用券商API,可以根据预设的交易策略,如当股票价格达到某个设定值时自动买
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 深入探讨:CME期货CBOT高频合约历史行情数据分析方法
hightick
外盘期货高频历史行情数据集数据分析数据挖掘金融python数据库
深入探讨:CME期货CBOT高频合约历史行情数据分析方法为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/19zhe1CCpDM56amDKO2nMwQ?pwd=4wpq提取码:4wpq请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。交易量与价格关系分析交易量与价格之间的关系
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 云专线:金融与电商实时交易系统的强大后盾
xjxijd
云计算安全大数据
在数字经济蓬勃发展的当下,金融和电商行业的实时交易系统是各自领域的核心。这些系统的高效运行依赖稳定、快速且安全的网络连接,云专线作为前沿技术,为其提供坚实保障,在数字化浪潮中作用关键。金融市场价格波动频繁,交易机会稍纵即逝,交易系统性能直接影响交易成败。云专线通过优化网络架构与传输路径,大幅降低数据传输延迟,让交易指令能在毫秒甚至微秒级时间抵达服务器,助力金融机构和投资者快速响应市场变化,抢占先机
- 销售易NeoCRM与Salesforce:优势特色大比拼
saas
在当今竞争激烈的CRM市场中,销售易NeoCRM作为国产CRM的代表,与全球领先的Salesforce展开了激烈的竞争。本文将从功能、用户体验、价格、市场评价以及适用场景等方面对这两款CRM系统进行对比总结和盘点。一、功能对比销售易NeoCRM:销售管理:提供从线索获取、商机管理到订单成交的完整销售漏斗管理,实现销售过程的标准化管理。客户管理:提供全方位的客户画像功能,记录和追踪客户的所有互动历
- 销售易NeoCRM与Salesforce:优势特色大比拼
saas
在当今竞争激烈的CRM市场中,销售易NeoCRM作为国产CRM的代表,与全球领先的Salesforce展开了激烈的竞争。本文将从功能、用户体验、价格、市场评价以及适用场景等方面对这两款CRM系统进行对比总结和盘点。一、功能对比销售易NeoCRM:销售管理:提供从线索获取、商机管理到订单成交的完整销售漏斗管理,实现销售过程的标准化管理。客户管理:提供全方位的客户画像功能,记录和追踪客户的所有互动历
- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 3.2025年个人心仪笔记本
growhuan
从选购笔记本开始写起笔记本电脑
3.2025年个人心仪笔记本本篇文章主要分享一下2025年个人向心仪的几款笔记本,仅供参考。笔记本决赛名单经过在各大平台疯狂搜索了解各种信息后,结合个人审美以及预算整理出几个最后的决赛选手。如下:ThinkBook14:优点:定位轻薄本、14英寸版本、性能外观都不错,支持后续扩展内存硬盘空间,一线品牌,售后容易。缺点:功耗太低,性能释放感觉不够。对比14+并没有便宜多少。价格:酷睿:U5-125H
- LightGBM+NRBO-Transformer-BiLSTM多变量回归预测 Matlab代码
前程算法屋
私信获取源码transformer回归matlab
LightGBM+NRBO-Transformer-BiLSTM多变量回归预测Matlab代码一、引言1.1、研究背景与意义在现代数据科学领域,多变量回归预测问题一直是一个研究热点。随着互联网和物联网技术的迅速发展,数据量呈指数级增长,如何从这些海量数据中提取有用的信息,并进行准确预测,成为了一个亟待解决的问题。多变量回归预测模型在金融风险管理、气象预报、医疗健康等多个领域具有广泛的应用。例如,在
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s