数据分析实例 —— 气象数据

一、实例介绍

本实例将对意大利北部沿海地区的气象数据进行分析与可视化。首先会运用 Python 中 matplotlib 库对数据进行图表化处理,然后调用 scikit-learn 库当中的的 SVM 库对数据进行回归分析,最终在图表分析的支持下得出我们的结论。

来源: 本内容来自于 Fabio Nelli 的著作《Python数据分析实战》 第九章:数据分析实例——气象数据。

分析环境

  • Python3
  • jupyter notebook

二、实例分析

气象数据是在网上很容易找到的一类数据。很多网站都提供以往的气压、气温、湿度和降雨量等气象数据。只需指定位置和日期,就能获取一个气象数据文件。这些测量数据是由气象站收集的。气象数据这类数据源涵盖的信息范围较广。数据分析的目的是把原始数据转化为信息,再把信息转化为知识,因此拿气象数据作为数据分析的对象来讲解数据分析全过程再合适不过。

2.1 待验证的假设:靠海对气候的影响

问题:海洋对一个地区的气候有何影响?

研究系统:亚得里亚海和波河流域

意大利是一个被海洋包围的半岛国家。为什么要把自己的选择局限在意大利呢?因为我们所研究的问题刚好和意大利人的一种典行为相关,也就是夏天我们喜欢躲在海边,以躲避内陆的酷热。意大利是半岛国家,找到可研究的海域不是问题,但是如何衡量海洋对其远近不同的地方的影响?这就引出了一个大问题。意大利其实多山地,离海差不多远,可以彼此作为参照的内陆区域较少。为了衡量海洋对气候的影响,我排除了山地,因为山地也许会引入其他很多因素,比如海拔。

意大利波河流域这块区域就很适合研究海洋对气候的影响。这一片平原东起亚得里亚海,向内陆延伸数百公里(见图1)。它周边虽不乏群山环绕,但由于它很宽广,削弱了群山的影响。此外,该区域城镇密集,也便于选取一组离海远近不同的城市。我们所选的几个城市,两个城市间的最大距离约为 400 公里。

图1:波河流域和亚得里亚海(谷歌地图)

第一步,选 10 个城市作为参照组。选择城市时,注意它们要能代表整个平原地区(见图2)。

图2:作为参照组的10个城市(还有一个海滨城市,作为计算其他城市离海远近的基点)

如图2所示,我们选取了 10 个城市。随后将分析它们的天气数据,其中 5 个城市在距海 100 公里范围内,其余 5 个距海 100~400 公里。

选作样本的城市列表如下:

  • Ferrara(费拉拉)
  • Torino(都灵)
  • Mantova(曼托瓦)
  • Milano(米兰)
  • Ravenna(拉文纳)
  • Asti(阿斯蒂)
  • Bologna(博洛尼亚)
  • Piacenza(皮亚琴察)
  • Cesena(切塞纳)
  • Faenza(法恩莎)

接下来,我们需要计算这些城市离海有多远。这里使用 TheTimeNow 网站提供的服务,以海滨城市 Comacchio 作为基点,计算其他城市与它之间的距离:


三、分析准备

定义好要研究的系统之后,我们就需要创建数据源,以获取研究所需的数据。本实例数据来源于 OpenWeatherMap,它的网址是 http://openweathermap.org/

现在获取该网站数据需要注册后取得APPID才能使用API(百度所知,未验证),这里直接下载本次实验所需的数据集:

http://labfile.oss.aliyuncs.com/courses/780/WeatherData.zip

下载好数据集后,导入相关包,加载相关数据,开始相关分析。

import numpy as np
import pandas as pd
import datetime

df_ferrara = pd.read_csv('WeatherData/ferrara_270615.csv')
df_milano = pd.read_csv('WeatherData/milano_270615.csv')
df_mantova = pd.read_csv('WeatherData/mantova_270615.csv')
df_ravenna = pd.read_csv('WeatherData/ravenna_270615.csv')
df_torino = pd.read_csv('WeatherData/torino_270615.csv')
df_asti = pd.read_csv('WeatherData/asti_270615.csv')
df_bologna = pd.read_csv('WeatherData/bologna_270615.csv')
df_piacenza = pd.read_csv('WeatherData/piacenza_270615.csv')
df_cesena = pd.read_csv('WeatherData/cesena_270615.csv')
df_faenza = pd.read_csv('WeatherData/faenza_270615.csv')

查看DataFrame内部结构:

图3:表示一个城市气象数据的DataFrame结构

四、分析开始

从数据可视化入手分析收集到的数据是常见的做法。前面讲过,matplotlib 库提供一系列图表生成工具,能够以可视化形式表示数据。数据可视化在数据分析阶段非常有助于发现研究系统的一些特点。

导入必要的库:

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from dateutil import parser

4.1 温度数据分析

非常简单的分析方法是先分析一天中气温的变化趋势。以城市米兰为例。

# 温度和日期数据
x1 = df_milano['day']
y1 = df_milano['temp']

# 把日期数据转换成 datetime 的格式
day_milano = [parser.parse(x) for x in x1]

fig, ax = plt.subplots()
# 调整x轴坐标刻度,使其旋转70度,方便查看
plt.xticks(rotation=70)  
hours = mdates.DateFormatter('%H:%M')
# 设定X轴显示的格式
ax.xaxis.set_major_formatter(hours)  
ax.plot(day_milano ,y1, 'r')

由图4可见,气温走势接近正弦曲线,从早上开始气温逐渐升高,最高温出现在下午两点到六点之间,随后气温逐渐下降,在第二天早上六点时达到最低值。

图4:米兰某一天的气温趋势图

我们进行数据分析的目的是尝试解释是否能够评估海洋是怎样影响气温的,以及是否能够影响气温趋势,因此我们同时来看几个不同城市的气温趋势。这是检验分析方向是否正确的唯一方式。因此,我们选择三个离海最近以及三个离海最远的城市。

# 读取温度和日期数据
y1 = df_ravenna['temp']
x1 = df_ravenna['day']
y2 = df_faenza['temp']
x2 = df_faenza['day']
y3 = df_cesena['temp']
x3 = df_cesena['day']
y4 = df_milano['temp']
x4 = df_milano['day']
y5 = df_asti['temp']
x5 = df_asti['day']
y6 = df_torino['temp']
x6 = df_torino['day']

# 把日期从 string 类型转化为标准的 datetime 类型
day_ravenna = [parser.parse(x) for x in x1]
day_faenza = [parser.parse(x) for x in x2]
day_cesena = [parser.parse(x) for x in x3]
day_milano = [parser.parse(x) for x in x4]
day_asti = [parser.parse(x) for x in x5]
day_torino = [parser.parse(x) for x in x6]

fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)

ax.plot(day_ravenna,y1,'r',day_faenza,y2,'r',day_cesena,y3,'r')
ax.plot(day_milano,y4,'g',day_asti,y5,'g',day_torino,y6,'g')

离海最近的三个城市的气温曲线使用红色,而离海最远的三个城市的曲线使用绿色。

图5:六个城市的气温趋势

结果分析:离海最近的三个城市的最高气温比离海最远的三个城市低不少,而最低气温看起来差别较小。

我们可以沿着这个方向做深入研究,收集10个城市的最高温和最低温,用线性图表示气温最值点和离海远近之间的关系。

# dist 是一个装城市距离海边距离的列表
dist = [df_ravenna['dist'][0],
    df_cesena['dist'][0],
    df_faenza['dist'][0],
    df_ferrara['dist'][0],
    df_bologna['dist'][0],
    df_mantova['dist'][0],
    df_piacenza['dist'][0],
    df_milano['dist'][0],
    df_asti['dist'][0],
    df_torino['dist'][0]
]

# temp_max 是一个存放每个城市最高温度的列表
temp_max = [df_ravenna['temp'].max(),
    df_cesena['temp'].max(),
    df_faenza['temp'].max(),
    df_ferrara['temp'].max(),
    df_bologna['temp'].max(),
    df_mantova['temp'].max(),
    df_piacenza['temp'].max(),
    df_milano['temp'].max(),
    df_asti['temp'].max(),
    df_torino['temp'].max()
]

# temp_min 是一个存放每个城市最低温度的列表
temp_min = [df_ravenna['temp'].min(),
    df_cesena['temp'].min(),
    df_faenza['temp'].min(),
    df_ferrara['temp'].min(),
    df_bologna['temp'].min(),
    df_mantova['temp'].min(),
    df_piacenza['temp'].min(),
    df_milano['temp'].min(),
    df_asti['temp'].min(),
    df_torino['temp'].min()
]
最高气温

先把最高温画出来。

fig, ax = plt.subplots()
ax.plot(dist,temp_max,'ro')
图6:最高温变化趋势与离海远近之间的关系

如图所示,海洋对气象数据具有一定程度的影响这个假设是正确的(至少一天内如此)。而且从图中可以发现,海洋的影响衰减的很快,离海60~70公里开外,气温就已攀升到高位。

用线性回归算法(scikit-learn库的SVR)得到两条直线,分别表示两种不同的气温趋势。

(这段代码会跑比较久的时间)

from sklearn.svm import SVR

# dist1是靠近海的城市集合,dist2是远离海洋的城市集合
dist1 = dist[0:5]
dist2 = dist[5:10]

# 改变列表的结构,dist1现在是5个列表的集合
# 之后我们会看到 numpy 中 reshape() 函数也有同样的作用
dist1 = [[x] for x in dist1]
dist2 = [[x] for x in dist2]

# temp_max1 是 dist1 中城市的对应最高温度
temp_max1 = temp_max[0:5]
# temp_max2 是 dist2 中城市的对应最高温度
temp_max2 = temp_max[5:10]

# 我们调用SVR函数,在参数中规定了使用线性的拟合函数
# 并且把 C 设为1000来尽量拟合数据(因为不需要精确预测不用担心过拟合)
svr_lin1 = SVR(kernel='linear', C=1e3)
svr_lin2 = SVR(kernel='linear', C=1e3)

# 加入数据,进行拟合(这一步可能会跑很久,大概10多分钟,休息一下:) )
svr_lin1.fit(dist1, temp_max1)
svr_lin2.fit(dist2, temp_max2)

# 关于 reshape 函数请看代码后面的详细讨论
xp1 = np.arange(10,100,10).reshape((9,1))
xp2 = np.arange(50,400,50).reshape((7,1))
yp1 = svr_lin1.predict(xp1)
yp2 = svr_lin2.predict(xp2)

然后绘图:

# 限制了 x 轴的取值范围
ax.set_xlim(0,400)

# 画出图像
ax.plot(xp1, yp1, c='b', label='Strong sea effect')
ax.plot(xp2, yp2, c='g', label='Light sea effect')
fig
图7:最高气温和距离的相关性趋势图

如上所见,离海 60 公里以内,气温上升速度很快,从 28 度陡升至 31 度,随后增速渐趋缓和(如果还继续增长的话),更长的距离才会有小幅上升。这两种趋势可分别用两条直线来表示,直线的表达式为:

y = ax + b(其中 a 为斜率,b 为截距。)

考虑将这两条直线的交点作为受海洋影响和不受海洋影响的区域的分界点,或者至少是海洋影响较弱的分界点。

from scipy.optimize import fsolve

# 定义了第一条拟合直线
def line1(x):
    a1 = svr_lin1.coef_[0][0]
    b1 = svr_lin1.intercept_[0]
    return a1*x + b1

# 定义了第二条拟合直线
def line2(x):
    a2 = svr_lin2.coef_[0][0]
    b2 = svr_lin2.intercept_[0]
    return a2*x + b2

# 定义了找到两条直线的交点的 x 坐标的函数
def findIntersection(fun1,fun2,x0):
    return fsolve(lambda x : fun1(x) - fun2(x),x0)

result = findIntersection(line1,line2,0.0)
print("[x,y] = [ %d , %d ]" % (result,line1(result)))

# x = [0,10,20, ..., 300]
x = np.linspace(0,300,31)
plt.plot(x,line1(x),x,line2(x),result,line1(result),'ro')

得到交点的坐标 [x,y] = [53,30]

图8:由线性回归所得到的两条直线的交点

因此,可以说海洋对气温产生影响的平均距离为53公里(当天的情况)。

最低气温
# axis 函数规定了 x 轴和 y 轴的取值范围
plt.axis((0,400,15,25))
plt.plot(dist,temp_min,'bo')
图9:最低气温几乎与离海远近无关

显然,图中显示夜间或早上6点左右的最低气温与海洋无关。

4.2 湿度数据分析

考察当天三个近海城市和三个内陆城市的湿度趋势。

# 读取湿度数据
y1 = df_ravenna['humidity']
x1 = df_ravenna['day']
y2 = df_faenza['humidity']
x2 = df_faenza['day']
y3 = df_cesena['humidity']
x3 = df_cesena['day']
y4 = df_milano['humidity']
x4 = df_milano['day']
y5 = df_asti['humidity']
x5 = df_asti['day']
y6 = df_torino['humidity']
x6 = df_torino['day']

# 重新定义 fig 和 ax 变量
fig, ax = plt.subplots()
plt.xticks(rotation=70)

# 把时间从 string 类型转化为标准的 datetime 类型
day_ravenna = [parser.parse(x) for x in x1]
day_faenza = [parser.parse(x) for x in x2]
day_cesena = [parser.parse(x) for x in x3]
day_milano = [parser.parse(x) for x in x4]
day_asti = [parser.parse(x) for x in x5]
day_torino = [parser.parse(x) for x in x6]

# 规定时间的表示方式
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)

#表示在图上
ax.plot(day_ravenna,y1,'r',day_faenza,y2,'r',day_cesena,y3,'r')
ax.plot(day_milano,y4,'g',day_asti,y5,'g',day_torino,y6,'g')
图10:湿度趋势

从图中看好像近海城市湿度要大于内陆城市,全天湿度差距在20%左右。我们再来看一下湿度的极值和离海远近之间的关系,是否跟我们的第一印象相符。

最大湿度:

# 获取最大湿度数据
hum_max = [df_ravenna['humidity'].max(),
df_cesena['humidity'].max(),
df_faenza['humidity'].max(),
df_ferrara['humidity'].max(),
df_bologna['humidity'].max(),
df_mantova['humidity'].max(),
df_piacenza['humidity'].max(),
df_milano['humidity'].max(),
df_asti['humidity'].max(),
df_torino['humidity'].max()
]

plt.plot(dist,hum_max,'bo')
图11:最大湿度与离海远近之间关系的趋势图

最小湿度

# 获取最小湿度
hum_min = [
df_ravenna['humidity'].min(),
df_cesena['humidity'].min(),
df_faenza['humidity'].min(),
df_ferrara['humidity'].min(),
df_bologna['humidity'].min(),
df_mantova['humidity'].min(),
df_piacenza['humidity'].min(),
df_milano['humidity'].min(),
df_asti['humidity'].min(),
df_torino['humidity'].min()
]
plt.plot(dist,hum_min,'bo')
图12:最小湿度与离海远近之间关系的趋势图

由最大湿度和最小湿度图可知,近海城市无论是最大还是最小湿度都要高于内陆城市。然而由于采集的数据点太少,还不能说湿度和距离之间存在线性关系或者其他能用曲线表示的关系。

4.3 风向频率玫瑰图

在采集的每个城市的气象数据中,下面两个与风有关:

  • 风力(风向)
  • 风速

分析数据发现,风速不仅跟一天的时间段相关联,还与一个介于0!360度的方向有关。(每一条测量数据包含风吹来的方向。)

图13:DataFrame中与风有关的数据

对于风力数据,将其制作成线性图不是最佳选择。这里试着做一个散点图:

plt.plot(df_ravenna['wind_deg'],df_ravenna['wind_speed'],'ro')
图14:用散点图表示呈360度分布的数据点

很显然该图表现力也不足。

要表示360度分布的数据点,最好使用另一种可视化方法:极区图。先创建一个直方图,也就是将360度分为八个面元,每个面元为45度,把所有的数据点分到这八个面元中。

hist, bins = np.histogram(df_ravenna['wind_deg'],8,[0,360])
print(hist)
print(bins)

histogram() 函数返回结果中的数组 hist 为落在每个面元的数据点数量。

[0 5 11 1 0 1 0 0]

返回结果中的数组 bins 定义了 360 度范围内各面元的边界。

[0. 45. 90. 135. 180. 225. 270. 315. 360.]

要想正确定义极区图,离不开这两个数组。我们将创建一个函数来绘制极区图,其中部分代码在第 7 章已讲过。我们把这个函数定义为 showRoseWind(),它有三个参数:values 数组,指的是想为其作图的数据,也就是这里的 hist 数组;第二个参数 city_name 为字符串类型,指定图表标题所用的城市名称;最后一个参数 max_value 为整型,指定最大的蓝色值。

定义这样一个函数很有用,它既能避免多次重复编写相同的代码,还能增强代码的模块化程度,便于你把精力放到与函数内部操作相关的概念上。

def showRoseWind(values,city_name,max_value):
    N = 8

    # theta = [pi*1/4, pi*2/4, pi*3/4, ..., pi*2]
    theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)
    radii = np.array(values)
    # 绘制极区图的坐标系
    plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)

    # 列表中包含的是每一个扇区的 rgb 值,x越大,对应的color越接近蓝色
    colors = [(1-x/max_value, 1-x/max_value, 0.75) for x in radii]

    # 画出每个扇区
    plt.bar(theta, radii, width=(2*np.pi/N), bottom=0.0, color=colors)

    # 设置极区图的标题
    plt.title(city_name, x=0.2, fontsize=20)

你需要修改变量colors存储的颜色表。这里,扇形的颜色越接近蓝色,值越大。

调用函数:

showRoseWind(hist,'Ravenna',max(hist))
图15:极区图能够表示在360度范围内分布的数据点

由图可见,整个 360 度的范围被分成八个区域(面元),每个区域弧长为 45 度,此外每个区域还有一列呈放射状排列的刻度值。在每个区域中,用半径长度可以改变的扇形表示一个数值,半径越长,扇形所表示的数值就越大。为了增强图表的可读性,我们使用与扇形半径相对应的颜色表。半径越长,扇形跨度越大,颜色越接近于深蓝色。

从刚得到的极区图可以得知风向在极坐标系中的分布方式。该图表示这一天大部分时间风都吹向西南和正西方向。

定义好 showRoseWind() 函数之后,查看其他城市的风向情况也非常简单。

hist, bin = np.histogram(df_ferrara['wind_deg'],8,[0,360])
print(hist)
showRoseWind(hist,'Ferrara', max(hist))
图16:ferrara的风向极区图

计算风速均值的分布情况

即使是跟风速相关的其他数据,也可以用极区图来表示。

定义 RoseWind_Speed 函数,计算将 360 度范围划分成的八个面元中每个面元的平均风速。

def RoseWind_Speed(df_city):
    # degs = [45, 90, ..., 360]
    degs = np.arange(45,361,45)
    tmp = []
    for deg in degs:
        # 获取 wind_deg 在指定范围的风速平均值数据
        tmp.append(df_city[(df_city['wind_deg']>(deg-46)) & (df_city['wind_deg']

这里 df_city[(df_city['wind_deg']>(deg-46)) & (df_city['wind_deg']

RoseWind_Speed() 函数返回一个包含八个平均风速值的 NumPy 数组。该数组将作为先前定义的 showRoseWind() 函数的第一个参数,这个函数是用来绘制极区图的。

showRoseWind(RoseWind_Speed(df_ravenna),'Ravenna',max(hist))
图17:表示风速在360度范围内分布情况的极区图

如图所示的风向频率玫瑰图表示风速在 360 度范围内的分布情况。


五、小结

本章主要目的是演示如何从原始数据获取信息。其中有些信息无法给出重要结论,而有些信息能够验证假设,增加我们对系统状态的认识,而找出这种信息也就意味着数据分析取得了成功。


来源: 本内容来自于 Fabio Nelli 的著作《Python数据分析实战》 第九章:数据分析实例——气象数据。

你可能感兴趣的:(数据分析实例 —— 气象数据)