1. 场景
2. 版本
mysql | flink | clickhouse |
---|---|---|
5.7.20-log | flink-1.13.1 | 20.11.4.13 |
5.7.20-log | flink-1.13.2 | 20.11.4.13 |
5.7.20-log | flink-1.13.5 | 20.11.4.13 |
flink 连接clickhouse 的包
4. 代码的pom 文件
4.1 pom 文件
4.0.0
com.glab
flink-connector-clickhouse
13.1
flink-connector-clickhouse
UTF-8
1.13.1
2.11
0.3.0
jar
ru.yandex.clickhouse
clickhouse-jdbc
${clickhouse-jdbc-version}
provided
com.google.guava
guava
com.google.guava
guava
30.1.1-jre
org.apache.httpcomponents
httpclient
4.5.2
org.apache.httpcomponents
httpmime
4.5.2
org.apache.httpcomponents
httpcore
4.4.4
commons-logging
commons-logging
1.2
provided
ch.qos.logback
logback-core
1.2.3
provided
ch.qos.logback
logback-classic
1.2.3
provided
org.apache.flink
flink-sql-connector-kafka_${scala.binary.version}
${flink.version}
test
org.apache.flink
flink-csv
${flink.version}
test
org.apache.flink
flink-clients_${scala.binary.version}
${flink.version}
provided
org.apache.flink
flink-table-api-java-bridge_${scala.binary.version}
${flink.version}
provided
org.apache.flink
flink-streaming-java_${scala.binary.version}
${flink.version}
provided
junit
junit
4.11
test
org.apache.flink
flink-table-common
${flink.version}
provided
org.apache.flink
flink-table-planner-blink_${scala.binary.version}
${flink.version}
provided
org.apache.flink
flink-connector-jdbc_${scala.binary.version}
${flink.version}
provided
org.apache.maven.plugins
maven-compiler-plugin
1.8
UTF-8
org.apache.maven.plugins
maven-shade-plugin
2.2
true
out/flink-connector-clickhouse-${pom.version}.jar
*:*
*:*
META-INF/*.SF
META-INF/*.DSA
META-INF/*.RSA
package
shade
org.apache.maven.plugins
maven-assembly-plugin
3.0.0
jar-with-dependencies
make-assembly
package
single
4.2. ClickHouseDynamicTableFactory.java
package com.glab.flink.connector.clickhouse.table;
import com.glab.flink.connector.clickhouse.table.internal.dialect.ClickHouseDialect;
import com.glab.flink.connector.clickhouse.table.internal.options.ClickHouseOptions;
import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.ConfigOptions;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.connector.jdbc.internal.options.JdbcLookupOptions;
import org.apache.flink.table.api.TableSchema;
import org.apache.flink.table.catalog.ResolvedCatalogTable;
import org.apache.flink.table.catalog.ResolvedSchema;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.source.DynamicTableSource;
import org.apache.flink.table.factories.*;
import org.apache.flink.table.utils.TableSchemaUtils;
import java.time.Duration;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
public class ClickHouseDynamicTableFactory implements DynamicTableSinkFactory, DynamicTableSourceFactory {
public static final String IDENTIFIER = "clickhouse";
private static final String DRIVER_NAME = "ru.yandex.clickhouse.ClickHouseDriver";
public static final ConfigOption URL = ConfigOptions.key("url")
.stringType()
.noDefaultValue()
.withDeprecatedKeys("the ClickHouse url in format `clickhouse://:`.");
public static final ConfigOption USERNAME = ConfigOptions.key("username")
.stringType()
.noDefaultValue()
.withDescription("the ClickHouse username.");
public static final ConfigOption PASSWORD = ConfigOptions.key("password")
.stringType()
.noDefaultValue()
.withDescription("the ClickHouse password.");
public static final ConfigOption DATABASE_NAME = ConfigOptions.key("database-name")
.stringType()
.defaultValue("default")
.withDescription("the ClickHouse database name. Default to `default`.");
public static final ConfigOption TABLE_NAME = ConfigOptions.key("table-name")
.stringType()
.noDefaultValue()
.withDescription("the ClickHouse table name.");
public static final ConfigOption SINK_BATCH_SIZE = ConfigOptions.key("sink.batch-size")
.intType()
.defaultValue(Integer.valueOf(1000))
.withDescription("the flush max size, over this number of records, will flush data. The default value is 1000.");
public static final ConfigOption SINK_FLUSH_INTERVAL = ConfigOptions.key("sink.flush-interval")
.durationType()
.defaultValue(Duration.ofSeconds(1L))
.withDescription("the flush interval mills, over this time, asynchronous threads will flush data. The default value is 1s.");
public static final ConfigOption SINK_MAX_RETRIES = ConfigOptions.key("sink.max-retries")
.intType()
.defaultValue(Integer.valueOf(3))
.withDescription("the max retry times if writing records to database failed.");
public static final ConfigOption SINK_WRITE_LOCAL = ConfigOptions.key("sink.write-local")
.booleanType()
.defaultValue(Boolean.valueOf(false))
.withDescription("directly write to local tables in case of Distributed table.");
public static final ConfigOption SINK_PARTITION_STRATEGY = ConfigOptions.key("sink.partition-strategy")
.stringType()
.defaultValue("balanced")
.withDescription("partition strategy. available: balanced, hash, shuffle.");
public static final ConfigOption SINK_PARTITION_KEY = ConfigOptions.key("sink.partition-key")
.stringType()
.noDefaultValue()
.withDescription("partition key used for hash strategy.");
public static final ConfigOption SINK_IGNORE_DELETE = ConfigOptions.key("sink.ignore-delete")
.booleanType()
.defaultValue(Boolean.valueOf(true))
.withDescription("whether to treat update statements as insert statements and ignore deletes. defaults to true.");
public static final ConfigOption LOOKUP_CACHE_MAX_ROWS = ConfigOptions.key("lookup.cache.max-rows")
.longType()
.defaultValue(-1L)
.withDescription("the max number of rows of lookup cache, over this value, the oldest rows will be eliminated." +
"cache.max-rows and cache ttl options must all be specified id any of them is specified. cache is not enabled as default.");
public static final ConfigOption LOOKUP_CACHE_TTL = ConfigOptions.key("lookup.cache.ttl")
.durationType()
.defaultValue(Duration.ofSeconds(10))
.withDescription("the cache time to live");
public static final ConfigOption LOOKUP_MAX_RETRIES = ConfigOptions.key("lookup.max-retries")
.intType()
.defaultValue(3)
.withDescription("the max retry times if lookup database failed.");
@Override
public DynamicTableSource createDynamicTableSource(Context context) {
FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
ReadableConfig config = helper.getOptions();
helper.validate();
try {
validateConfigOptions(config);
} catch (Exception e) {
e.printStackTrace();
}
//带New的使用1.13API,不带的用12的
ResolvedSchema resolvedSchema = context.getCatalogTable().getResolvedSchema();
return new ClickHouseDynamicTableSource(resolvedSchema, getOptions(config), getJdbcLookupOptions(config));
}
@Override
public DynamicTableSink createDynamicTableSink(Context context) {
FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
ReadableConfig config = helper.getOptions();
helper.validate();
try {
validateConfigOptions(config);
} catch (Exception e) {
e.printStackTrace();
}
//带New的使用1.13API,不带的用12的
ResolvedSchema resolvedSchema = context.getCatalogTable().getResolvedSchema();
return new ClickHouseDynamicTableSink(resolvedSchema, getOptions(config));
}
@Override
public String factoryIdentifier() {
return IDENTIFIER;
}
@Override
public Set> requiredOptions() {
Set> requiredOptions = new HashSet<>();
requiredOptions.add(URL);
requiredOptions.add(TABLE_NAME);
return requiredOptions;
}
@Override
public Set> optionalOptions() {
Set> optionalOptions = new HashSet<>();
optionalOptions.add(USERNAME);
optionalOptions.add(PASSWORD);
optionalOptions.add(DATABASE_NAME);
optionalOptions.add(SINK_BATCH_SIZE);
optionalOptions.add(SINK_FLUSH_INTERVAL);
optionalOptions.add(SINK_MAX_RETRIES);
optionalOptions.add(SINK_WRITE_LOCAL);
optionalOptions.add(SINK_PARTITION_STRATEGY);
optionalOptions.add(SINK_PARTITION_KEY);
optionalOptions.add(SINK_IGNORE_DELETE);
optionalOptions.add(LOOKUP_CACHE_MAX_ROWS);
optionalOptions.add(LOOKUP_CACHE_TTL);
optionalOptions.add(LOOKUP_MAX_RETRIES);
return optionalOptions;
}
private void validateConfigOptions(ReadableConfig config) throws Exception{
String partitionStrategy = config.get(SINK_PARTITION_STRATEGY);
if (!Arrays.asList(new String[] { "hash", "balanced", "shuffle" }).contains(partitionStrategy))
throw new IllegalArgumentException("Unknown sink.partition-strategy `" + partitionStrategy + "`");
if (partitionStrategy.equals("hash") && !config.getOptional(SINK_PARTITION_KEY).isPresent())
throw new IllegalArgumentException("A partition key must be provided for hash partition strategy");
if ((config.getOptional(USERNAME).isPresent() ^ config.getOptional(PASSWORD).isPresent()))
throw new IllegalArgumentException("Either all or none of username and password should be provided");
}
private ClickHouseOptions getOptions(ReadableConfig config) {
return (new ClickHouseOptions.Builder()).withUrl((String)config.get(URL))
.withUsername((String)config.get(USERNAME))
.withPassword((String)config.get(PASSWORD))
.withDatabaseName((String)config.get(DATABASE_NAME))
.withTableName((String)config.get(TABLE_NAME))
.withBatchSize(((Integer)config.get(SINK_BATCH_SIZE)).intValue())
.withFlushInterval((Duration)config.get(SINK_FLUSH_INTERVAL))
.withMaxRetries(((Integer)config.get(SINK_MAX_RETRIES)).intValue())
.withWriteLocal((Boolean)config.get(SINK_WRITE_LOCAL))
.withPartitionStrategy((String)config.get(SINK_PARTITION_STRATEGY))
.withPartitionKey((String)config.get(SINK_PARTITION_KEY))
.withIgnoreDelete(((Boolean)config.get(SINK_IGNORE_DELETE)).booleanValue())
.setDialect(new ClickHouseDialect())
.build();
}
/* private JdbcOptions getJdbcOptions(ReadableConfig config) {
return JdbcOptions.builder()
.setDriverName(DRIVER_NAME)
.setDBUrl(config.get(URL))
.setTableName(config.get(TABLE_NAME))
.setDialect(new ClickHouseDialect())
.build();
}*/
private JdbcLookupOptions getJdbcLookupOptions(ReadableConfig config) {
return JdbcLookupOptions.builder()
.setCacheExpireMs(config.get(LOOKUP_CACHE_TTL).toMillis())
.setMaxRetryTimes(config.get(LOOKUP_MAX_RETRIES))
.setCacheMaxSize(config.get(LOOKUP_CACHE_MAX_ROWS))
.build();
}
}
4.3 ClickHouseDynamicTableSink.java
package com.glab.flink.connector.clickhouse.table;
import com.glab.flink.connector.clickhouse.table.internal.AbstractClickHouseSinkFunction;
import com.glab.flink.connector.clickhouse.table.internal.options.ClickHouseOptions;
import org.apache.flink.table.catalog.ResolvedSchema;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.sink.SinkFunctionProvider;
import org.apache.flink.types.RowKind;
import org.apache.flink.util.Preconditions;
public class ClickHouseDynamicTableSink implements DynamicTableSink {
private final ResolvedSchema resolvedSchema;
private final ClickHouseOptions options;
public ClickHouseDynamicTableSink(ResolvedSchema resolvedSchema, ClickHouseOptions options) {
this.resolvedSchema = resolvedSchema;
this.options = options;
}
@Override
public ChangelogMode getChangelogMode(ChangelogMode requestedMode) {
validatePrimaryKey(requestedMode);
return ChangelogMode.newBuilder()
.addContainedKind(RowKind.INSERT)
.addContainedKind(RowKind.UPDATE_AFTER)
.addContainedKind(RowKind.DELETE)
.build();
}
private void validatePrimaryKey(ChangelogMode requestedMode) {
Preconditions.checkState((ChangelogMode.insertOnly().equals(requestedMode) || this.resolvedSchema.getPrimaryKey().isPresent()), "please declare primary key for sink table when query contains update/delete record.");
}
@Override
public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {
AbstractClickHouseSinkFunction sinkFunction =
(new AbstractClickHouseSinkFunction.Builder())
.withOptions(this.options)
.withFieldNames(this.resolvedSchema.getColumnNames())
.withFieldDataTypes(this.resolvedSchema.getColumnDataTypes())
.withPrimaryKey(this.resolvedSchema.getPrimaryKey())
.withRowDataTypeInfo(context.createTypeInformation(this.resolvedSchema.toSinkRowDataType()))
.build();
return SinkFunctionProvider.of(sinkFunction);
}
@Override
public ClickHouseDynamicTableSink copy() {
return new ClickHouseDynamicTableSink(this.resolvedSchema, this.options);
}
@Override
public String asSummaryString() {
return "ClickHouse sink";
}
}
4.4 ClickHouseDynamicTableSource.java
package com.glab.flink.connector.clickhouse.table;
import com.glab.flink.connector.clickhouse.table.internal.ClickHouseRowDataLookupFunction;
import com.glab.flink.connector.clickhouse.table.internal.dialect.ClickHouseDialect;
import com.glab.flink.connector.clickhouse.table.internal.options.ClickHouseOptions;
import org.apache.flink.connector.jdbc.internal.options.JdbcLookupOptions;
import org.apache.flink.connector.jdbc.table.JdbcRowDataInputFormat;
import org.apache.flink.table.catalog.ResolvedSchema;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.source.*;
import org.apache.flink.table.connector.source.abilities.SupportsLimitPushDown;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.types.RowKind;
import org.apache.flink.util.Preconditions;
import org.apache.http.client.utils.URIBuilder;
public class ClickHouseDynamicTableSource implements ScanTableSource, LookupTableSource, SupportsLimitPushDown {
private final ResolvedSchema resolvedSchema;
private final ClickHouseOptions options;
private final JdbcLookupOptions lookupOptions;
private long limit = -1;
public ClickHouseDynamicTableSource(ResolvedSchema resolvedSchema, ClickHouseOptions options, JdbcLookupOptions lookupOptions) {
this.resolvedSchema = resolvedSchema;
this.options = options;
this.lookupOptions = lookupOptions;
}
@Override
public LookupRuntimeProvider getLookupRuntimeProvider(LookupContext lookupContext) {
String[] keyNames = new String[lookupContext.getKeys().length];
for(int i = 0; i = 0) {
query = String.format("%s %s", query, dialect.getLimitClause(limit));
}
RowType rowType = (RowType)resolvedSchema.toSourceRowDataType().getLogicalType();
getJdbcUrl(options.getUrl(), options.getDatabaseName());
JdbcRowDataInputFormat build = JdbcRowDataInputFormat.builder()
.setDrivername(options.getDialect().defaultDriverName().get())
.setDBUrl(getJdbcUrl(options.getUrl(), options.getDatabaseName()))
.setUsername(options.getUsername().orElse(null))
.setPassword(options.getPassword().orElse(null))
.setQuery(query)
.setRowConverter(dialect.getRowConverter(rowType))
.setRowDataTypeInfo(scanContext.createTypeInformation(resolvedSchema.toSourceRowDataType()))
.build();
return InputFormatProvider.of(build);
}
@Override
public DynamicTableSource copy() {
ClickHouseDynamicTableSource tableSource = new ClickHouseDynamicTableSource(resolvedSchema, options, lookupOptions);
return tableSource;
}
@Override
public String asSummaryString() {
return "clickhouse source";
}
private String getJdbcUrl(String url, String dbName) {
try {
return "jdbc:" + (new URIBuilder(url)).setPath("/" + dbName).build().toString();
}catch (Exception e) {
throw new RuntimeException("get JDBC url failed.", e);
}
}
@Override
public void applyLimit(long limit) {
this.limit = limit;
}
}
4.5 其他的类代码上传
代码地址
flink 13 自定义的clickhouse 的source 和 sink 的 自定义 https://download.csdn.net/download/wudonglianga/86501949
4.5.1 flink 所含的包
[root@node01 flink-1.13.1]# cd lib/
[root@node01 lib]# ll
总用量 384180
-rw-r--r-- 1 root root 358385 8月 27 18:39 clickhouse-jdbc-0.3.0.jar
-rw-r--r-- 1 root root 4585064 8月 28 22:51 flink-connector-clickhouse-13.1-jar-with-dependencies.jar
-rw-r--r-- 1 root root 248980 8月 28 22:12 flink-connector-jdbc_2.11-1.13.1.jar
-rw-r--r-- 1 root root 30087268 8月 28 18:10 flink-connector-mysql-cdc-2.0.2.jar
-rw-r--r-- 1 zookeeper hadoop 92311 5月 25 2021 flink-csv-1.13.1.jar
-rw-r--r-- 1 zookeeper hadoop 115530972 5月 25 2021 flink-dist_2.11-1.13.1.jar
-rw-r--r-- 1 root root 81363 10月 5 2021 flink-hadoop-compatibility_2.12-1.12.0.jar
-rw-r--r-- 1 zookeeper hadoop 148131 5月 25 2021 flink-json-1.13.1.jar
-rw-r--r-- 1 root root 43317025 10月 5 2021 flink-shaded-hadoop-2-uber-2.8.3-10.0.jar
-rw-rw-r-- 1 zookeeper hadoop 7709740 4月 8 2021 flink-shaded-zookeeper-3.4.14.jar
-rw-r--r-- 1 root root 38101480 10月 5 2021 flink-sql-connector-hive-2.3.6_2.11-1.11.0.jar
-rw-r--r-- 1 zookeeper hadoop 36417228 5月 25 2021 flink-table_2.11-1.13.1.jar
-rw-r--r-- 1 zookeeper hadoop 40965908 5月 25 2021 flink-table-blink_2.11-1.13.1.jar
-rw-r--r-- 1 root root 1654821 10月 5 2021 hadoop-mapreduce-client-core-3.1.1.3.1.4.0-315.jar
-rw-r--r-- 1 root root 52191593 10月 5 2021 hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar
-rw-r--r-- 1 root root 17427063 10月 5 2021 hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar
-rw-rw-r-- 1 zookeeper hadoop 67114 10月 10 2019 log4j-1.2-api-2.12.1.jar
-rw-rw-r-- 1 zookeeper hadoop 276771 10月 10 2019 log4j-api-2.12.1.jar
-rw-rw-r-- 1 zookeeper hadoop 1674433 10月 10 2019 log4j-core-2.12.1.jar
-rw-rw-r-- 1 zookeeper hadoop 23518 10月 10 2019 log4j-slf4j-impl-2.12.1.jar
-rw-r--r-- 1 root root 2397321 8月 28 22:13 mysql-connector-java-8.0.21.jar
[root@node01 lib]# pwd
/opt/module/flink/flink-1.13.1/flink-1.13.1/lib
[root@node01 lib]#
4.6 表结构
4.6.1 mysql 表结构
SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
-- ----------------------------
-- Table structure for Flink_cdc
-- ----------------------------
DROP TABLE IF EXISTS `Flink_cdc`;
CREATE TABLE `Flink_cdc` (
`id` bigint(64) NOT NULL AUTO_INCREMENT,
`name` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
`age` int(20) NULL DEFAULT NULL,
`birthday` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
`ts` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 10225 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
-- ----------------------------
-- Records of Flink_cdc
-- ----------------------------
INSERT INTO `Flink_cdc` VALUES (190, '乜荷爽', 5, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (191, '嵇露影', 4, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (192, '富胜', 18, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (193, '孟言', 7, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (194, '漆维光', 16, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (195, '澹巧', 7, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (196, '司玉', 23, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (197, '唐栋豪', 5, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (198, '姚以', 22, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (199, '仲亨', 15, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (200, '凌燕翠', 11, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
INSERT INTO `Flink_cdc` VALUES (201, '琴荷亚', 13, '2022-02-19 19:29:39', '2022-02-19 19:29:39');
SET FOREIGN_KEY_CHECKS = 1;
4.6.2 clickhouse 表结构
create table clickhosuetable ( id UInt64 , name String, age UInt64, birthday Datetime ) engine =MergeTree partition by toYYYYMMDD(birthday) primary key (id);
insert into clickhosuetable values (10001,'flink',25,'2022-08-28 12:00:00');
#*******************source*********************************
CREATE TABLE source_mysql2 (
id BIGINT PRIMARY KEY NOT ENFORCED,
name STRING,
age INT,
birthday TIMESTAMP(3),
ts TIMESTAMP(3)
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://192.168.1.162:3306/wudldb',
'table-name' = 'Flink_cdc',
'username' = 'root',
'password' = '123456'
);
#*************************slink 表***************************
CREATE TABLE if not exists wutable2 (
id BIGINT,
name STRING,
age BIGINT,
birthday TIMESTAMP,
PRIMARY KEY( id) NOT ENFORCED
) WITH (
'connector' = 'clickhouse',
'url' = 'clickhouse://192.168.1.161:8123',
'username' = 'default',
'password' = '',
'database-name' = 'wudldb',
'table-name' = 'clickhosuetable',
'lookup.cache.max-rows' = '100',
'lookup.cache.ttl' = '10',
'lookup.max-retries' = '3'
);
#***************************insert *************************
insert into wutable2 select id ,name , age, birthday from source_mysql2;
4.7 flink cdc 到clickhouse
CREATE TABLE source_mysql (
id BIGINT PRIMARY KEY NOT ENFORCED,
name STRING,
age INT,
birthday TIMESTAMP(3),
ts TIMESTAMP(3)
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.1.162',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'wudldb',
'table-name' = 'Flink_cdc'
);
#****************************
CREATE TABLE if not exists wutable2 (
id BIGINT,
name STRING,
age BIGINT,
birthday TIMESTAMP,
PRIMARY KEY( id) NOT ENFORCED
) WITH (
'connector' = 'clickhouse',
'url' = 'clickhouse://192.168.1.161:8123',
'username' = 'default',
#'password-wudongliang' = '',
'database-name' = 'wudldb',
'table-name' = 'clickhosuetable',
'lookup.cache.max-rows' = '100',
'lookup.cache.ttl' = '10',
'lookup.max-retries' = '3'
);
# *******************************************************************
Flink SQL> insert into wutable2 select id ,name , age, birthday from source_mysql;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: 1712c4e583d900b5523c08150ad9dd70
Flink SQL>
clickhouse结果
SELECT count(*)
FROM clickhosuetable
Query id: 93ee83d4-7092-46e4-9954-736af4e09548
┌─count()─┐
│ 20449 │
└─────────┘
1 rows in set. Elapsed: 0.005 sec.
node01.com :)
flink 程序
[图片上传失败...(image-78e9f3-1661701843853)]
、***********************************************************************
flink 对应 clickhouse 的 数据类型映射 Data Type Mapping
Flink Type | ClickHouse Type |
---|---|
CHAR | String |
VARCHAR | String / IP / UUID |
STRING | String / Enum |
BOOLEAN | UInt8 |
BYTES | FixedString |
DECIMAL | Decimal / Int128 / Int256 / UInt64 / UInt128 / UInt256 |
TINYINT | Int8 |
SMALLINT | Int16 / UInt8 |
INTEGER | Int32 / UInt16 / Interval |
BIGINT | Int64 / UInt32 |
FLOAT | Float32 |
DOUBLE | Float64 |
DATE | Date |
TIME | DateTime |
TIMESTAMP | DateTime |
TIMESTAMP_LTZ | DateTime |
INTERVAL_YEAR_MONTH | Int32 |
INTERVAL_DAY_TIME | Int64 |
ARRAY | Array |
MAP | Map |
ROW | Not supported |
MULTISET | Not supported |
RAW | Not supported |
事例:
DROP TABLE if exists test.lbs_ck;
CREATE TABLE if not exists test.lbs_ck (
ts BIGINT,
id STRING,
geohash12 STRING,
loc_type STRING,
wifimac STRING,
id_type STRING,
.....
address STRING,
PRIMARY KEY(ts, id) NOT ENFORCED
) WITH (
'connector' = 'clickhouse', -- 使用 ck connector
'url' = 'clickhouse://xxxxx:8123', --集群中任意一台
'username' = '',
'password' = '',
'database-name' = 'test',
'table-name' = 'lbs',
-----以下为sink参数------
'sink.batch-size' = '1000000', -- 批量插入数量
'sink.flush-interval' = '5000', --刷新时间,默认1s
'sink.max-retries' = '3', --最大重试次数
'sink.partition-strategy' = 'hash', --插入策略hash\balanced\shuffle
'sink.partition-key' = 'id'
'sink.write-local' = 'true',--是否写入本地表
'sink.ignore-delete' = 'true',
-----以下为source参数-----
'lookup.cache.max-rows' = '100',
'lookup.cache.ttl' = '10',
'lookup.max-retries' = '3'
);
--1、sink.partition-strategy选择hash时,需配置sink.partition-key,并且sink.write-local=true写入本地表;
hash函数使用murmur3_32,与官方murmurHash3_32()集群表分发策略保持一致
--2、当sink.write-local=false时写入集群表,sink.partition-strategy无效,分发策略以来ck集群表配置;