flink cdc 整合 数据湖hudi 同步 hive

1. 版本说明

组件 版本
hudi 10.0
flink 13.5
hive 3.1.0

2. 实现效果 通过flink cdc 整合 hudi 到hive

flink cdc 讲解
flink cdc 1.2实例
flink cdc 2.0 实例

3.flink 需要的jar 包

需要的包:flink-connector-mysql-cdc-2.0.2.jar

-rw-r--r-- 1 root root   7802399 216 00:36 doris-flink-1.0-SNAPSHOT.jar
-rw-r--r-- 1 root root    249571 216 00:36 flink-connector-jdbc_2.12-1.13.5.jar
-rw-r--r-- 1 root root    359138 216 00:36 flink-connector-kafka_2.12-1.13.5.jar
-rw-r--r-- 1 root root  30087268 217 22:12 flink-connector-mysql-cdc-2.0.2.jar
-rw-r--r-- 1 root root     92315 216 00:36 flink-csv-1.13.5.jar
-rw-r--r-- 1 root root 106535830 216 00:36 flink-dist_2.12-1.13.5.jar
-rw-r--r-- 1 root root    148127 216 00:36 flink-json-1.13.5.jar
-rw-r--r-- 1 root root  43317025 216 00:36 flink-shaded-hadoop-2-uber-2.8.3-10.0.jar
-rw-r--r-- 1 root root   7709740 216 00:36 flink-shaded-zookeeper-3.4.14.jar
-rw-r--r-- 1 root root   3674116 216 00:36 flink-sql-connector-kafka_2.12-1.13.5.jar
-rw-r--r-- 1 root root  35051557 216 00:35 flink-table_2.12-1.13.5.jar
-rw-r--r-- 1 root root  38613344 216 00:36 flink-table-blink_2.12-1.13.5.jar
-rw-r--r-- 1 root root  62447468 216 00:36 hudi-flink-bundle_2.12-0.10.0.jar
-rw-r--r-- 1 root root  17276348 216 00:36 hudi-hadoop-mr-bundle-0.10.0.jar
-rw-r--r-- 1 root root    207909 216 00:36 log4j-1.2-api-2.16.0.jar
-rw-r--r-- 1 root root    301892 216 00:36 log4j-api-2.16.0.jar
-rw-r--r-- 1 root root   1789565 216 00:36 log4j-core-2.16.0.jar
-rw-r--r-- 1 root root     24258 216 00:36 log4j-slf4j-impl-2.16.0.jar
-rw-r--r-- 1 root root    724213 216 00:36 mysql-connector-java-5.1.9.jar
[root@node01 lib]# pwd
/opt/module/flink/flink-1.13.5/lib
[root@node01 lib]# 

4. 实现功能场景

flink cdc 整合 数据湖hudi 同步 hive_第1张图片

5. 实现步骤

1.创建数据库表,并且配置binlog 文件
2.在flinksql 中创建flink cdc 表
3.创建视图
4.创建输出表,关联Hudi表,并且自动同步到Hive表
5.查询视图数据,插入到输出表 -- flink  后台实时执行

5.1 开启mysql binlog

server-id=162
log-bin=mysql-bin
#sync-binlog=1
# 指定不同步的库
binlog-ignore-db=information_schema
binlog-ignore-db=performance_schema
binlog-ignore-db=sys
binlog-ignore-db=mysql
binlog_format=ROW
expire_logs_days=30
binlog_row_image=full
#指定同步的库
#binlog-do-db=test

重启mysql service mysqld restart

5.2 创建mysql 表

CREATE TABLE `Flink_cdc` (
  `id` BIGINT(64) AUTO_INCREMENT PRIMARY KEY,
  `name` VARCHAR(64)  NULL,
  `age` INT(20) NULL,
    birthday TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
   ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL
) ;
INSERT INTO `wudldb`.`Flink_cdc`(NAME,age) VALUES("flink",18) ;

5.3 在flinksql 中 创建flinkcdc 表

Flink SQL> CREATE TABLE source_mysql (
   id BIGINT PRIMARY KEY NOT ENFORCED,
   name STRING,
   age INT,
   birthday TIMESTAMP(3),
   ts TIMESTAMP(3)
 ) WITH (
 'connector' = 'mysql-cdc',
 'hostname' = '192.168.1.162',
 'port' = '3306',
 'username' = 'root',
 'password' = '123456',
 'server-time-zone' = 'Asia/Shanghai',
 'debezium.snapshot.mode' = 'initial',
 'database-name' = 'wudldb',
 'table-name' = 'Flink_cdc'
 );
[INFO] Execute statement succeed.

5.4 创建flinksql 中的 flinkcdc 视图

Flink SQL> create view view_source_flinkcdc_mysql 
> AS 
> SELECT *, DATE_FORMAT(birthday, 'yyyyMMdd') as part FROM source_mysql;
[INFO] Execute statement succeed.

5.5 创建输出表,关联Hudi表,并且自动同步到Hive表

Flink SQL> CREATE TABLE flink_cdc_sink_hudi_hive(
> id bigint ,
> name string,
> age int,
> birthday TIMESTAMP(3),
> ts TIMESTAMP(3),
> part VARCHAR(20),
> primary key(id) not enforced
> )
> PARTITIONED BY (part)
> with(
> 'connector'='hudi',
> 'path'= 'hdfs://192.168.1.161:8020/flink_cdc_sink_hudi_hive', 
> 'table.type'= 'MERGE_ON_READ',
> 'hoodie.datasource.write.recordkey.field'= 'id', 
> 'write.precombine.field'= 'ts',
> 'write.tasks'= '1',
> 'write.rate.limit'= '2000', 
> 'compaction.tasks'= '1', 
> 'compaction.async.enabled'= 'true',
> 'compaction.trigger.strategy'= 'num_commits',
> 'compaction.delta_commits'= '1',
> 'changelog.enabled'= 'true',
> 'read.streaming.enabled'= 'true',
> 'read.streaming.check-interval'= '3',
> 'hive_sync.enable'= 'true',
> 'hive_sync.mode'= 'hms',
> 'hive_sync.metastore.uris'= 'thrift://node02.com:9083',
> 'hive_sync.jdbc_url'= 'jdbc:hive2://node02.com:10000',
> 'hive_sync.table'= 'flink_cdc_sink_hudi_hive',
> 'hive_sync.db'= 'db_hive',
> 'hive_sync.username'= 'root',
> 'hive_sync.password'= '123456',
> 'hive_sync.support_timestamp'= 'true'
> );
[INFO] Execute statement succeed.

5.6 . 查询视图数据,插入到输出表

Flink SQL> INSERT INTO flink_cdc_sink_hudi_hive SELECT id, name,age,birthday, ts, part FROM view_source_flinkcdc_mysql ;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: c618c9f528b9793adf4418640bb2a0fc

5.7 查看flink 运行job

flink cdc 整合 数据湖hudi 同步 hive_第2张图片

6.hudi 与hive 整合

将hudi hudi-hadoop-mr-bundle-0.10.0.jar 拷贝到hive的lib 目录下面 , 重启hive 服务

6.1 连接hive 查看hudi 同步到hive 中的表

0: jdbc:hive2://node01.com:2181,node02.com:21> show tables;
INFO  : Compiling command(queryId=hive_20220218000941_016798b7-3ecd-4c41-ae54-65e6a034968f): show tables
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:tab_name, type:string, comment:from deserializer)], properties:null)
INFO  : Completed compiling command(queryId=hive_20220218000941_016798b7-3ecd-4c41-ae54-65e6a034968f); Time taken: 0.016 seconds
INFO  : Executing command(queryId=hive_20220218000941_016798b7-3ecd-4c41-ae54-65e6a034968f): show tables
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hive_20220218000941_016798b7-3ecd-4c41-ae54-65e6a034968f); Time taken: 0.012 seconds
INFO  : OK
+------------------------------+
|           tab_name           |
+------------------------------+
| flink_cdc_sink_hudi_hive_ro  |
| flink_cdc_sink_hudi_hive_rt  |
+------------------------------+

hive 的两张表

ro类型是读优化查询 , rt 类型快照查询

6.1 查询

0: jdbc:hive2://node01.com:2181,node02.com:21> select id ,name , age , birthday from flink_cdc_sink_hudi_hive_ro;
INFO  : Compiling command(queryId=hive_20220218003353_57a46dca-3cd2-4da1-b455-bbd63da16413): select id ,name , age , birthday from flink_cdc_sink_hudi_hive_ro
INFO  : Semantic Analysis Completed (retrial = false)
INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:id, type:bigint, comment:null), FieldSchema(name:name, type:string, comment:null), FieldSchema(name:age, type:int, comment:null), FieldSchema(name:birthday, type:bigint, comment:null)], properties:null)
INFO  : Completed compiling command(queryId=hive_20220218003353_57a46dca-3cd2-4da1-b455-bbd63da16413); Time taken: 0.124 seconds
INFO  : Executing command(queryId=hive_20220218003353_57a46dca-3cd2-4da1-b455-bbd63da16413): select id ,name , age , birthday from flink_cdc_sink_hudi_hive_ro
INFO  : Completed executing command(queryId=hive_20220218003353_57a46dca-3cd2-4da1-b455-bbd63da16413); Time taken: 0.029 seconds
INFO  : OK
+-----+--------+------+----------------+
| id  |  name  | age  |    birthday    |
+-----+--------+------+----------------+
| 1   | flink  | 18   | 1645142397000  |
+-----+--------+------+----------------+
1 row selected (0.278 seconds)
0: jdbc:hive2://node01.com:2181,node02.com:21> 

整体效果
flink cdc 整合 数据湖hudi 同步 hive_第3张图片

错误 中途遇到一个错误

flinkcdc 需要的 flink-connector-mysql-cdc-2.0.2.jar 而不是 flink-sql-connector-mysql-cdc-2.0.2.jar 这个包
否在会遇到一下错误:

Flink SQL> select * from users_source_mysql;


Exception in thread "main" org.apache.flink.table.client.SqlClientException: Unexpected exception. This is a bug. Please consider filing an issue.
	at org.apache.flink.table.client.SqlClient.startClient(SqlClient.java:201)
	at org.apache.flink.table.client.SqlClient.main(SqlClient.java:161)
Caused by: java.lang.NoClassDefFoundError: org/apache/kafka/connect/data/Schema
	at java.lang.Class.getDeclaredMethods0(Native Method)
	at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
	at java.lang.Class.getDeclaredMethod(Class.java:2128)
	at java.io.ObjectStreamClass.getPrivateMethod(ObjectStreamClass.java:1629)
	at java.io.ObjectStreamClass.access$1700(ObjectStreamClass.java:79)
	at java.io.ObjectStreamClass$3.run(ObjectStreamClass.java:520)
	at java.io.ObjectStreamClass$3.run(ObjectStreamClass.java:494)
	at java.security.AccessController.doPrivileged(Native Method)
	at java.io.ObjectStreamClass.<init>(ObjectStreamClass.java:494)
	at java.io.ObjectStreamClass.lookup(ObjectStreamClass.java:391)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1134)
	at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
	at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
	at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
	at java.io.ObjectOutputStream.writeArray(ObjectOutputStream.java:1378)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1174)
	at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
	at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
	at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
	at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
	at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
	at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
	at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
	at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
	at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
	at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
	at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
	at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
	at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
	at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
	at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
	at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
	at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
	at org.apache.flink.util.InstantiationUtil.serializeObject(InstantiationUtil.java:624)
	at org.apache.flink.util.SerializedValue.<init>(SerializedValue.java:62)
	at org.apache.flink.streaming.api.graph.StreamingJobGraphGenerator.createJobVertex(StreamingJobGraphGenerator.java:597)
	at org.apache.flink.streaming.api.graph.StreamingJobGraphGenerator.createChain(StreamingJobGraphGenerator.java:457)
	at org.apache.flink.streaming.api.graph.StreamingJobGraphGenerator.setChaining(StreamingJobGraphGenerator.java:378)
	at org.apache.flink.streaming.api.graph.StreamingJobGraphGenerator.createJobGraph(StreamingJobGraphGenerator.java:179)
	at org.apache.flink.streaming.api.graph.StreamingJobGraphGenerator.createJobGraph(StreamingJobGraphGenerator.java:117)
	at org.apache.flink.streaming.api.graph.StreamGraph.getJobGraph(StreamGraph.java:934)
	at org.apache.flink.client.StreamGraphTranslator.translateToJobGraph(StreamGraphTranslator.java:50)
	at org.apache.flink.client.FlinkPipelineTranslationUtil.getJobGraph(FlinkPipelineTranslationUtil.java:39)
	at org.apache.flink.client.deployment.executors.PipelineExecutorUtils.getJobGraph(PipelineExecutorUtils.java:56)
	at org.apache.flink.client.deployment.executors.AbstractSessionClusterExecutor.execute(AbstractSessionClusterExecutor.java:67)
	at org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.executeAsync(StreamExecutionEnvironment.java:1957)
	at org.apache.flink.table.planner.delegation.ExecutorBase.executeAsync(ExecutorBase.java:55)
	at org.apache.flink.table.api.internal.TableEnvironmentImpl.executeQueryOperation(TableEnvironmentImpl.java:795)
	at org.apache.flink.table.api.internal.TableEnvironmentImpl.executeInternal(TableEnvironmentImpl.java:1225)
	at org.apache.flink.table.client.gateway.local.LocalExecutor.lambda$executeOperation$3(LocalExecutor.java:213)
	at org.apache.flink.table.client.gateway.context.ExecutionContext.wrapClassLoader(ExecutionContext.java:90)
	at org.apache.flink.table.client.gateway.local.LocalExecutor.executeOperation(LocalExecutor.java:213)
	at org.apache.flink.table.client.gateway.local.LocalExecutor.executeQuery(LocalExecutor.java:235)
	at org.apache.flink.table.client.cli.CliClient.callSelect(CliClient.java:479)
	at org.apache.flink.table.client.cli.CliClient.callOperation(CliClient.java:412)
	at org.apache.flink.table.client.cli.CliClient.lambda$executeStatement$0(CliClient.java:327)
	at java.util.Optional.ifPresent(Optional.java:159)
	at org.apache.flink.table.client.cli.CliClient.executeStatement(CliClient.java:327)
	at org.apache.flink.table.client.cli.CliClient.executeInteractive(CliClient.java:297)
	at org.apache.flink.table.client.cli.CliClient.executeInInteractiveMode(CliClient.java:221)
	at org.apache.flink.table.client.SqlClient.openCli(SqlClient.java:151)
	at org.apache.flink.table.client.SqlClient.start(SqlClient.java:95)
	at org.apache.flink.table.client.SqlClient.startClient(SqlClient.java:187)
	... 1 more
Caused by: java.lang.ClassNotFoundException: org.apache.kafka.connect.data.Schema
	at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
	at java.lang.ClassLoader.loadClass(ClassLoader.java:418)
	at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:355)
	at java.lang.ClassLoader.loadClass(ClassLoader.java:351)
	... 69 more

Shutting down the session...
done.
[root@node01 bin]# 

你可能感兴趣的:(大数据之--数据湖,Flink,hive,flink,kafka)