- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- 【AI大模型】Prompt 提示词工程使用详解
小码农叔叔
AI大模型实战与应用Prompt提示词工程使用Prompt提示词工程Prompt提示词Prompt使用详解Promptprompt使用总结Prompt使用总结
目录一、前言二、Prompt提示词工程介绍2.1Prompt提示词工程是什么2.1.1Prompt构成要素2.2Prompt提示词工程有什么作用2.2.1Prompt提示词工程使用场景2.3为什么要学习Prompt提示词工程三、Prompt提示词工程元素构成与操作实践3.1前置准备3.2Prompt基本结构介绍与使用3.2.1明确指令3.2.2提供必要的原始内容3.2.3提供背景参考四、Promp
- 使用RAG-Chroma与OpenAI构建高效问答系统
srudfktuffk
人工智能python
在AI驱动的应用场景中,检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种强大的技术,可以提升问答系统的精度和效能。在这篇文章中,我们将深入探讨如何使用Chroma与OpenAI结合,构建一个基于RAG的问答系统。技术背景介绍RAG是一种结合信息检索(IR)和自然语言生成(NLG)的技术。它通过先检索与问题相关的信息,然后生成答案,提高了问答系统的准确性和相关
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
分享总结快乐
论文阅读
关键词:协作混合分配训练【目标检测】Co-DETR:ATSS+FasterRCNN+DETR协作的先进检测器(ICCV2023)-CSDN博客摘要:在这篇论文中,作者观察到在DETR中将过少的Query分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习,反之亦然,也会影响解码器中的注意力学习。为了缓解这个问题,作者提出了一种新颖的协同混合分配训练方案,名
- 《冲动》V1.6官方学习版
私人珍藏库
学习
《冲动》官方版https://pan.xunlei.com/s/VODiYvUAE1lECHcq66BR1np_A1?pwd=fxc6#具有侦探小说、戏剧和恐怖元素的惊悚片。主角结束了漫长的商务旅行回到家,他的妻子和年幼的儿子热切地等待着他。然而,当他到达时,他发现有些不对劲:房子感觉奇怪地空荡荡的,空气中弥漫着一种不自然的寂静。很快,他就陷入了一系列神秘而无法解释的事件中,深入探究那些让他质疑正
- Transformer入门(1)transformer及其编码器-解码器
通信仿真实验室
GoogleBERT构建和训练NLP模型berttransformer人工智能NLP自然语言处理
文章目录1.Transformer简介2.Transformer的编码器-解码器架构3.transformer的编码器1.Transformer简介Transformer模型是一种用于自然语言处理的机器学习模型,它在2017年由Google的研究者提出,并在论文《AttentionisAllYouNeed》中详细描述。Transformer模型的核心创新在于其采用了自注意力(self-attent
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- 用Python爬虫获取微博热搜词:数据抓取、分析与可视化全流程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言selenium
引言微博作为中国最受欢迎的社交平台之一,每时每刻都在更新着海量的内容。其中,微博热搜词反映了用户关注的热点话题、社会事件及潮流趋势。对于数据分析、情感分析以及趋势预测等领域,获取微博热搜数据是一个非常有价值的任务。在本篇博客中,我们将详细介绍如何使用Python爬虫技术获取微博的热搜词,并进行数据分析和可视化。通过全流程的讲解,帮助你了解如何通过爬虫技术抓取并分析微博热搜词数据。一、爬虫技术概述与
- 数据库实验三(SQL 查询语句实践与总结)
从以前
数据库数据库sqloraclemysql
一、实验目的掌握涉及一个以上数据表的查询方法。深入理解多表之间的连接,包括等值连接、自然连接、非等值连接、自身连接、外连接和复合条件连接等多种连接方式。熟练运用嵌套查询,通过多个简单查询构建复杂查询,以此增强SQL的查询能力。二、各类查询SQL语句及分析(一)查询特定班级学生选课情况问题描述:查询20161151班的学生在大学一年级选修的课程情况,查询结果要显示学号(Sno)、姓名(Sname)、
- Spring AI提示词模板PromptTemplate的使用
大龄码农有梦想
AI人工智能spring人工智能PromptTemplatePrompt提示词提示词模板SpringAI
本文重点介绍Prompt提示词和PromptTemplate提示词模板,在SpringAI框架里,Prompt类的设计旨在简化与LLM之间的交互过程,同时提供了足够的灵活性来满足不同类型的对话需求。通过合理利用Prompt及其内部的消息结构,开发者可以有效地引导LLM生成高质量的回答,提升用户体验。1、SpringBoot集成SpringAI框架如何基于Springboot集成SpringAI框架
- 通用数字人系统--引领智能交互新时代
人工智能python
通用数字人系统:引领智能交互新时代项目地址:https://github.com/HansonJames/general_digital_human_system核心特点高性能实现视频帧率稳定30FPS+,支持1080P高清输出音视频延迟控制在200ms以内对话响应时间5秒以内支持横向扩展,满足高并发需求智能交互基于GPT的自然语言理解实时知识库检索与问答表情与语音情感同步多语言及方言支持快速上手
- Wi-Fi 6网络设计与优化
A0_張張
网络算法
摘要Wi-Fi6网络作为新一代无线局域网标准,具有更高的网络性能和更广的应用场景,但同时也面临着网络设计与优化的难题。本文主要介绍了Wi-Fi6网络设计的关键技术和问题,包括无线信道分配、多用户接入、网络拓扑结构等,同时还阐述了Wi-Fi6网络的优化方法。本文旨在为网络设计师和相关研究人员提供有益的参考。关键词:Wi-Fi6,网络设计,无线信道分配,多用户接入,网络优化引言Wi-Fi6是目前最新的
- AI编程,不会使用提示词,那怎么能行!! 小南独家提示词书写技巧, 让你效率提高2倍!!! - 提示词第一课!!!!
小南AI学院
AIJAVA前端AI编程
0.前言这是提示词第一课程,未来还有cursor、Copilot、通义千问、MarsCode的实战。关注、收藏不迷路。麻烦点个赞吧。小南持续为大家1.如何写提示词编写有效提示词是高效使用AI编程软件的关键。下面介绍一些方法和技巧,帮助你更精准地引导模型生成所需内容。1.1明确角色将AI编程软件设定为特定领域的专家角色,有助于生成更专业、更贴合实际需求的内容。示例:“你是一位经验丰富的Java后端开
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- 常见哈希表相关题目
我要学编程(ಥ_ಥ)
优选算法专题算法数据结构哈希表
找往期文章包括但不限于本期文章中不懂的知识点:个人主页:我要学编程(ಥ_ಥ)-CSDN博客所属专栏:优选算法专题目录1.两数之和面试题01.02.判定是否互为字符重排217.存在重复元素219.存在重复元素II49.字母异位词分组哈希表我们在数据结构阶段也是重点学习了,并且也已经刷了一部分的题目了。下面还练习一部分题目即可。1.两数之和题目:给定一个整数数组nums和一个整数目标值target,请
- 数据飞轮:互联网企业降本增效的数智化新范式
大数据
2024年末临近,回顾过去两年多的复杂市场环境,互联网全行业普遍遭遇了增长放缓的挑战。在这样的背景下,“降本增效”成为了整个行业的关键词。为了应对这一挑战,众多企业开始探索新的发展模式,其中,“数据飞轮”的数智化模式凭借其特性,正在为行业提供一条有效的降本增效路径。数据飞轮理念的核心在于通过数据消费,充分发挥企业数据资产的价值。该模式倡导以数据消费为核心驱动力,推动数据流与业务流的深度融合,从而激
- C语言的语法糖
AI向前看
包罗万象golang开发语言后端
C语言的语法糖引言在程序开发的过程中,语言的设计和编写风格往往会直接影响开发效率和代码可读性。C语言作为一种广泛应用于系统编程和嵌入式开发的编程语言,其设计虽然追求简洁与高效,但在某些方面同样存在可以提高编程体验的“语法糖”。本文将深入探讨C语言中的语法糖概念及其应用对程序员的帮助。一、什么是语法糖“语法糖”(SyntacticSugar)一词最早由计算机科学家希伯特·马克·古尔德(PeterJ.
- 使用AI API生成生动比喻句的实践指南
wd48564awd
人工智能python
技术背景介绍在日常交流和表达中,比喻句能够使文字更生动、更具感染力。与其费力地构思,不如利用AIAPI来快速生成生动的比喻句。在这篇文章中,我们将探讨如何使用AIAPI来生成形象的比喻句。核心原理解析AI文本生成技术,尤其是基于大型语言模型的API,如Anthropic的Claude或OpenAI的GPT,以其理解和生成自然语言文本的能力,能够根据输入提示生成富有创意和感染力的比喻句。这是通过学习
- 构建一个针对SQL数据的问答系统
safHTEAHE
sqloracle数据库python
在如今的数据驱动时代,能够从结构化数据中提取信息并进行自然语言问答的能力是极其重要的。在这篇文章中,我们将探索如何使用大型语言模型(LLM)创建一个问答系统来查询SQL数据库中的表格数据。我们将通过对比链条和代理的实现来理解不同的建模策略。技术背景介绍结构化数据与非结构化数据的查询截然不同。对于结构化数据,我们往往通过创建和执行SQL查询来获取答案。通过这个指南,我们将展示如何使用链条和代理来开发
- 使用Amazon Bedrock API调用Anthropic的Claude模型
dwa46a56w4d
easyui前端javascriptpython
在AI模型应用领域,亚马逊的BedrockAPI提供了便捷的方式来访问诸如Anthropic的Claude这样强大的模型。通过AmazonBedrock,开发者可以在云端直接调用Claude进行各种自然语言处理任务。本指南将引导您如何在Python中通过Bedrock来使用Claude模型。技术背景介绍Claude是由Anthropic开发的AI模型,提供强大的自然语言处理能力。通过AmazonB
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- 使用 LangChain 构建多PDF文档聊天应用
jkgSFS
langchainpdfeasyuipython
随着大型语言模型(LLMs)的普及,如何将它们应用于文档处理成为了热门话题之一。本文将通过一个教程,展示如何使用LangChain构建一个能够处理多个PDF文档并与之对话的应用。技术背景介绍LangChain是一个广受欢迎的库,能够帮助开发者轻松地与LLMs和不同的嵌入技术进行整合。它提供了方便的接口和工具,使得复杂的自然语言处理任务变得简单高效。核心原理解析我们将利用LangChain来读取多个
- 深入了解Text2SQL开源项目(Chat2DB、SQL Chat 、Wren AI 、Vanna)
m0_74823983
开源sql人工智能
深入了解Text2SQL开源项目(Chat2DB、SQLChat、WrenAI、Vanna)前言1.Chat2DB2.SQLChat3.WrenAI4.Vanna前言在数据驱动决策的时代,将自然语言查询转化为结构化查询语言(SQL)的能力变得日益重要。无论是小型创业公司还是大型企业,都希望能够更轻松地从海量的数据中挖掘出有价值的见解。然而,对于那些不熟悉SQL或者数据库架构的用户来说,直接编写复杂
- 使用Claude构建文本生成应用
asd5646asd
easyui前端javascriptpython
在现代AI技术领域,Claude以其在广泛的文本任务中的优越表现受到广泛关注。无论是处理代码、撰写散文还是其他自然语言任务,Claude都能提供精准的文本输出。为了更好地实现这些功能,我们需要掌握Claude的API使用,以及如何编写有效的提示词。本文将深入探讨Claude的文本生成能力,通过可运行的代码示例,帮助您快速上手实际开发。技术背景介绍Claude是由Anthropic开发的一种智能文本
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- 文献综述相关ChatGPT提示词分享
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能数据分析AIGC信息可视化数据挖掘prompt
文献综述ChatGPT可以帮助提高文献综述的有效性和全面性。ChatGPT可以高效搜索和审查与宝子们课题研究相关的文献资料来源。一些给力的插件工具还可以帮助您总结复杂的研究论文并提取信息以更快更好地消化信息。合理的运用ChatGPT和GPTs可以提高文献综述的清晰度和质量,使其更加全面和有洞察力。文献综述提示词*131.在[人工智能相关]领域中,主要发现有哪些?2.在[人工智能相关]领域中,引用次
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- 边缘计算的方式
黑石云
边缘计算
做边缘计算这个行业要想赚得到收益,那一定要找到适合自己参与的一种方式。目前参与边缘计算的话,它主要有两个渠道。第一个就是用盒子来跑,这个盒子的话包括光猫、路由器、摄像头等等,盒子是一条网线带动一个盒子,它的门槛会比较低,支持30到300兆上行,所以的话盒子它是非常好入手的。但是如果说想把盒子做好就需要在渠道这一方面有一定的能力。就可以把盒子给铺出去。盒子量增大了,自然而然你的收益也会更高。只要带宽
- 企业落地大模型的路径选择:微调、RAG、提示词工程
AGI-杠哥
深度学习自然语言处理人工智能学习知识图谱
一、大模型的特点1)不确定性与传统应用不同,模型的输出是不确定的,即使多次问它一样的问题,给出的结果也可能不一样。这种特性对于日常应用业务OK,但是如果要在企业内用来处理具体业务问题,就必须提高这个稳定性,否则影响生产经营,例如产线操作人员通过模型获取操作步骤或者参数,如果步骤或者数据不对可能会导致产品出现质量问题等等。2)静态性模型一旦训练好,就无法再补充数据,因此模型不会了解你自己组织内部的年
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f