- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 使用UV管理PyTorch项目
PyTorch是深度学习研究和开发的流行选择。可以使用uv管理PyTorch项目,包括不同Python版本依赖、管理环境、甚至加速器选择等。安装Pytorch从打包角度来看,PyTorch有几个不常见的特点:许多PyTorchwheel托管在专门的索引上,而非Python包索引(PyPI)。因此,安装PyTorch通常需要配置项目使用PyTorch专属索引。PyTorch为每种加速器生成不同的构建
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- PyTorch的基础概念和复杂模型的基本使用
香蕉可乐荷包蛋
AI大模型项目中的使用pytorch人工智能python
文章目录一、PyTorch基础概念二、复杂模型的学习使用一、PyTorch基础概念张量(Tensor)操作:张量是PyTorch中的基本数据结构,类似于NumPy的数组,但支持GPU加速常见操作包括创建张量、张量运算、索引、切片等importtorch#创建张量x=torch.randn(3,4)y=torch.zeros(3,4)#张量运算z=x+y自动求导(Autograd):PyTorch的
- python3.9安装tensorflow-gpu 2.6.0和torch-gpu版本各依赖包的版本对应关系
首先使用的cuDNN(8.1)、CUDA(11.2)、tensorflow-gpu(2.6.0)、python(3.9)之间对应版本Window环境下安装pytorch下载地址tensorflow官网CUDA下载官网cuDNN下载官网注意:cuDNN需要注册absl-py0.15.0astunparse1.6.3cachetools5.3.2certifi2023.7.22charset-norm
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 神经网络常见激活函数 13-Softplus函数
亲持红叶
神经网络常见激活函数神经网络人工智能深度学习
文章目录Softplus函数+导函数函数和导函数图像优缺点PyTorch中的Softplus函数TensorFlow中的Softplus函数Softplus函数+导函数Softplus函数Softplus(x)=ln(1+e x)\begin{aligned}\operatorname{Softplus}(x)&=\ln\bigl(1+e^{\,x}\bigr)\end{aligned}Sof
- Anaconda 、Pytorch下载教程(保姆级)
湲绘
pytorchopencv人工智能condapython深度学习
#因为每次都自己去搜教程太麻烦,索性写个博客记录一下#一、Anaconda的下载与安装进入Anaconda官网官网:Anaconda|TheWorld’sMostPopularDataSciencePlatform下载地址:FreeDownload|Anaconda直接点击Download即可版本对应表如下,选择自己想要的python版本下载就好[环境配置]anaconda3的base环境与pyt
- 基于AutoCut实现在文档中按照片段剪辑视频
Mr数据杨
Python音频技术音视频
本项目致力于通过构建一个具备深度学习支持的多功能视频处理环境,为用户提供高效、智能的视频编辑和字幕生成工具。依托Anaconda环境管理工具和PyTorch的GPU加速能力,用户能够迅速搭建一个符合项目需求的Python环境。结合FunClip的源代码以及相关插件的安装和配置,用户可充分利用项目所支持的图像、音频识别功能,并以极少的配置便获得理想的视频裁剪效果。项目的核心在于简化深度学习项目的环境
- 嵌入式学习-PyTorch(8)-day24
LGGGGGQ
学习pytorch深度学习
torch.optim优化器torch.optim是PyTorch中用于优化神经网络参数的模块,里面实现了一系列常用的优化算法,比如SGD、Adam、RMSprop等,主要负责根据梯度更新模型的参数。️核心组成1.常用优化器优化器作用典型参数torch.optim.SGD标准随机梯度下降,支持momentumlr,momentum,weight_decaytorch.optim.Adam自适应学习
- 嵌入式学习-PyTorch(3)-day20
LGGGGGQ
学习pytorch人工智能
transforms结构及用法transforms.yp是一个工具箱就是将一个特定格式的图片经过这个工具的到想要的变换Tensor数据类型一、transforms的使用(Python)fromPILimportImagefromtorch.utils.tensorboardimportSummaryWriterfromtorchvisionimporttransformswriter=Summar
- 嵌入式学习-PyTorch(4)-day21
LGGGGGQ
学习
1、torchvision中数据集的使用认识官方的一些数据集Datasets—Torchvision0.22documentation试了一下CIFAR10数据集,知道了如何下载官方数据集和展示他们去tensorboard中importtorchvisionfromtorch.utils.tensorboardimportSummaryWriter#处理数据集dataset_transform=t
- yolov5推理简单代码(网上找了好多,最终找到了)
a2488220557
YOLO计算机视觉opencv
#yolov5#导包importtorchimportcv2frommultiprocessingimportProcess,Manager,Value#下面两个是yolov5文件夹里面的代码fromutils.generalimportnon_max_suppressionfrommodels.experimentalimportattempt_load#确保在进行对象检测时,边界框的位置可以与
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 手绘电路图的节点和端点检测一个简化版的算法实现框架
zhangfeng1133
算法
于论文描述,我将提供一个简化版的算法实现框架,用于手绘电路图的节点和端点检测,并整合生成电路原理图。以下代码结合了YOLOv5目标检测和传统图像处理技术,符合论文中提到的98.2%mAP和92%节点识别准确率的关键指标。核心算法实现(Python+OpenCV+YOLOv5)importcv2importnumpyasnpimporttorchfromyolov5importYOLOv5#需要安装
- torch numpy sort排序出现索引顺序不正常
明天,今天,此时
numpy
问题torch调用numpy,numpy的sort排序值的顺序没发现问题,但是排序的索引argsort()是有明显问题。方案多一次取索引arr.argsort().argsort()参考:https://blog.csdn.net/qq_50571974/article/details/123173118说明:argsort其实是没问题的,理解有点复杂,以序号的角度去测试和思考
- PyTorch torch.no_grad() 指南(笔记)
拉拉拉拉拉拉拉马
pytorch人工智能python笔记深度学习
PyTorchtorch.no_grad()权威在PyTorch深度学习框架中,高效的显存管理对于训练复杂模型和执行大规模推理任务至关重要。显存不足(OutOfMemory,OOM)错误是开发者经常面临的挑战之一。torch.no_grad()作为PyTorch提供的一个核心工具,能够在推理(inference)和验证(validation)阶段显著优化显存使用并提升计算速度。本报告旨在全面、深入
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- DataLoader
在PyTorch中,DataLoader是torch.utils.data模块中的一个重要类,用于将数据集包装成可迭代对象,在训练和测试模型时提供了高效、便捷的数据加载和批处理功能。主要作用:批量处理数据:将数据集中的样本整理成一个个批次(batch),方便模型进行一次处理多个样本,加速训练过程。例如,设置batch_size=32,就会每次从数据集中取出32个样本组成一个批次。数据打乱:在训练过
- PyTorch数据准备:从基础Dataset到高效DataLoader
慕婉0307
pytorchpytorch人工智能python
一、PyTorch数据加载核心组件在PyTorch中,数据准备主要涉及两个核心类:Dataset和DataLoader。它们共同构成了PyTorch灵活高效的数据管道系统。Dataset类:作为数据集的抽象基类,需要实现三个关键方法:len():返回数据集大小getitem():获取单个数据样本(可选)init():初始化逻辑常见实现方式:继承torch.utils.data.Dataset使用T
- PyTorch数据加载与预处理
飘若随风
PyTorchpytorch人工智能python
数据加载与预处理详解1.数据集类(Dataset和DataLoader)1.1Dataset基类PyTorch中的Dataset是一个抽象类,所有自定义的数据集都应该继承这个类,并实现以下两个方法:__len__():返回数据集的大小__getitem__():根据索引返回一个样本概念解析:Dataset类提供了统一的数据访问接口通过继承Dataset,我们可以轻松地将数据集成到PyTorch的生
- pad_sequence
朋也透william
人工智能深度学习
pad_sequence是PyTorch提供的工具,用于将一组张量序列(通常是变长的序列)进行填充。pad_sequence默认的填充方式是将所有序列填充到同一长度,即最长的序列的长度,这样可以确保所有序列都具有相同的维度。在处理变长序列时,pad_sequence会自动找到需要填充的最大序列长度,然后使用默认的填充值(通常是0)。texts=pad_sequence([torch.LongTen
- pytorch——cpu版本安装,anaconda及清华源镜像相关
龙鹰图腾223
cpu版本的安装1)准备工作:清华源下载所需版本的离线安装包https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/2)anacondaprompt安装d:进入d盘,cd/XX/XX/XX进入目标目录(安装包放的位置)然后condainstallXXXX.tar.bz2(注意:.bz2的后缀如果不加上会影响安装)方法2:直接用pip用
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉人工智能机器学习算法深度学习
LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的有个假设:就是最后一个词语融合了前面词语的信息减法操作主要用于提取模型内部表征中的"诚实性"概念向量。具体来说,这是通过对比诚实和不诚实场景下的模型隐藏状态实现的。importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizer,AutoConfigimportnum
- vllm本地部署bge-reranker-v2-m3模型API服务实战教程
雷 电法王
大模型部署linuxpythonvscodelanguagemodel
文章目录一、说明二、配置环境2.1安装虚拟环境2.2安装vllm2.3对应版本的pytorch安装2.4安装flash_attn2.5下载模型三、运行代码3.1启动服务3.2调用代码验证一、说明本文主要介绍vllm本地部署BAAI/bge-reranker-v2-m3模型API服务实战教程本文是在Ubuntu24.04+CUDA12.8+Python3.12环境下复现成功的二、配置环境2.1安装虚
- 【医学影像】无痛安装mamba
周树皮
医学影像python
去年编辑的一个帖子。摆了一段时间后重新回归,发送一下作为状态分界线。很癫狂的体验,man,whatcanisay!issue查看我的狗急跳墙状态1.确定版本cudanvcc-Vpythonpython--versiontorchpipshowtorch2.下载对应版本wheelcausal-conv1d:https://github.com/Dao-AILab/causal-conv1d/rele
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,