Elasticsearch的故事

第一个故事:趋势

  小明每十秒钟向es存入当前网卡的信息。该如何统计该网卡某天每小时接受到字节的趋势图。
注:(网卡信息中的接受字节数是一直累加的)

{
    "query": {
        "bool": {
            "must": [{
                    "range": {
                        "@timestamp": {
                            "gt": "2019-01-13T00:00:00.000+08:00",
                            "lt": "2019-01-13T23:59:59.999+08:00"
                        }
                    }
                }
            ]
        }
    },
    "size": 0,
    "aggs": {
        "groupByInterval": {
            "date_histogram": {
                "field": "@timestamp",
                "interval": "1h",
                "format": "yyyy-MM-dd HH:mm:ss",
                "time_zone": "+08:00",
                "min_doc_count": 0
            },
            "aggs": {
                "maxin": {
                    "max": {
                        "field": "system.network.in.bytes"
                    }
                },
                "in_deriv": {
                    "derivative": {
                        "buckets_path": "maxin",
                        "unit": "1s"
                    }
                }
            }
        }
    }
}

上面的查询语句将返回:

{
  "took" : 260,
  "timed_out" : false,
  "_shards" : {
    "total" : 1211,
    "successful" : 1211,
    "skipped" : 1205,
    "failed" : 0
  },
  "hits" : {
    "total" : 8640,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "groupByInterval" : {
      "buckets" : [
        {
          "key_as_string" : "2019-01-13 00:00:00",
          "key" : 1547308800000,
          "doc_count" : 360,
          "maxin" : {
            "value" : 1.5438929488E10
          }
        },
        ...
        ...
        {
          "key_as_string" : "2019-01-13 23:00:00",
          "key" : 1547391600000,
          "doc_count" : 360,
          "maxin" : {
            "value" : 1.5990460333E10
          },
          "in_deriv" : {
            "value" : 2883272.0,
            "normalized_value" : 800.9088888888889
          }
        }
      ]
    }
  }
}

知识点:
  derivative:用于histogram (or date_histogram)的子聚合。可以对histogram聚合中的指标类聚合进行求导。(简单来说就是每个时间段的值减去上一个时间段的值)其中“buckets_path”是描述需要求导的聚合名。因为“unit”设置为1s,所以返回结果中“normalized_value”是平均每秒的变化。

第二个故事:听说你要每个的最后一条?

  小明每十秒钟向es存入当前cpu使用的百分比信息。现有10台主机,该如何获取每台主机最新的一条cpu使用信息。

{
  "aggs": {
    "groupByHostName": {
      "terms": {
        "field": "host.name"
      },
      "aggs": {
        "lastOne": {
          "top_hits": {
            "size":1,
            "sort":[
              {
                "@timestamp":{
                    "order":"desc"
                }
              }
            ],
            "_source": {
              "includes": [ "system.cpu.total.pct"]
            }
          }
        }
      }
    }
  },
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "metricset.name": "cpu"
          }
        },
        {
            "range": {
                "@timestamp": {
                    "gt": "2019-01-13T00:00:00.000+08:00",
                    "lt": "2019-01-13T23:59:59.999+08:00"
                }
            }
        }
      ]
    }
  },
  "size": 0
}

上面的查询语句将返回:

{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 14,
    "successful" : 14,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 164136,
    "max_score" : 0.0,
    "hits" : [ ]
  },
  "aggregations" : {
    "groupByHostName" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 77736,
      "buckets" : [
        {
          "key" : "RedHat6.4-02",
          "doc_count" : 8640,
          "lastOne" : {
            "hits" : {
              "total" : 8640,
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "metricbeat-6.5.1-2019.01.13",
                  "_type" : "doc",
                  "_id" : "c1zwR2gB7bWvjZhWp3RJ",
                  "_score" : null,
                  "_source" : {
                    "system" : {
                      "cpu" : {
                        "total" : {
                          "pct" : 0.0655
                        }
                      }
                    }
                  },
                  "sort" : [
                    1547395192576
                  ]
                }
              ]
            }
          }
        },
        ...
        ...
        {
          "key" : "docker185",
          "doc_count" : 8640,
          "lastOne" : {
            "hits" : {
              "total" : 8640,
              "max_score" : null,
              "hits" : [
                {
                  "_index" : "metricbeat-6.5.1-2019.01.13",
                  "_type" : "doc",
                  "_id" : "xVzwR2gB7bWvjZhWqHSz",
                  "_score" : null,
                  "_source" : {
                    "system" : {
                      "cpu" : {
                        "total" : {
                          "pct" : 0.0509
                        }
                      }
                    }
                  },
                  "sort" : [
                    1547395192917
                  ]
                }
              ]
            }
          }
        }
      ]
    }
  }
}

知识点:
  top_hits聚合实现了在相同的hostname组中取得最新一条上报的文档。其中“sort”指定了按照上传时间倒序,“size”指定了取每组的最后一条,而“_source”中的“includes”则指定了只获取“system.cpu.total.pct”的值,不关心该条文档的其他字段。

第三个故事:一骑红尘妃子笑

  家住长安的小杨经常在网上购买岭南的荔枝。从岭南到长安的路上有许多个驿站,小杨的快递每经过一个驿站,该驿站的工作人员就会向es中记录一条包含快递单号和当前时间的信息。那么如何计算出每次从发货到收货的平均运输时间?

{
    "size": 0,
    "aggs": {
        "groupById": {
            "terms": {
                "field": "id"
            },
            "aggs": {
                "maxCreateTime": {
                    "max": {
                        "field": "createTime"
                    }
                },
                "minCreateTime": {
                    "min": {
                        "field": "createTime"
                    }
                },
                "resultValue": {
                    "bucket_script": {
                        "buckets_path": {
                            "min": "minCreateTime",
                            "max": "maxCreateTime"
                        },
                        "script": {
                            "source": "params.max - params.min"
                        }
                    }
                }
            }
        },
        "avgValue": {
            "avg_bucket": {
                "buckets_path": "groupById>resultValue"
            }
        }
    }
}

上面的查询语句将返回:

{
    "took": 5,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": 4,
        "max_score": 0.0,
        "hits": []
    },
    "aggregations": {
        "groupById": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [{
                "key": "1",
                "doc_count": 2,
                "minCreateTime": {
                    "value": 1.547366698E12,
                    "value_as_string": "2019-01-13 08:04:58"
                },
                "maxCreateTime": {
                    "value": 1.547539498E12,
                    "value_as_string": "2019-01-15 08:04:58"
                },
                "resultValue": {
                    "value": 1.728E8
                }
            }, {
                "key": "2",
                "doc_count": 2,
                "minCreateTime": {
                    "value": 1.547193898E12,
                    "value_as_string": "2019-01-11 08:04:58"
                },
                "maxCreateTime": {
                    "value": 1.547371938E12,
                    "value_as_string": "2019-01-13 09:32:18"
                },
                "resultValue": {
                    "value": 1.7804E8
                }
            }]
        },
        "avgValue": {
            "value": 1.7542E8
        }
    }
}

知识点:
  bucket_script聚合它执行一个脚本,该脚本可以执行对每个桶的计算。其中buckets_path将minCreateTime和maxCreateTime的结果作为参数,参数名分别是min和max。script中的source则指定了具体的计算内容。
  外层的avg_bucket聚合将计算出所有桶的平均耗时,其中buckets_path指定了对groupById聚合的resultValue子聚合做取平均值计算。
  除avg_bucket外,es还提供了max_bucket,min_bucket,sum_bucket,stats_bucket,derivative等其他操作。

持续更新中……

你可能感兴趣的:(Elasticsearch的故事)