41、Spark内核源码深度剖析之TaskScheduler原理剖析与源码分析

入口

// 最后,针对stage的task,创建TaskSet对象,调用taskScheduler的submitTasks()方法,提交taskSet
      // 默认情况下,我们的standalone模式,是使用的TaskSchedulerImpl,TaskScheduler只是一个trait
      taskScheduler.submitTasks(
        new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))

看看taskScheduler.submitTasks()方法,TaskSchedulerImpl的submitTasks()方法

/**
    * TaskScheduler提交任务的入口
    * @param taskSet
    */
  override def submitTasks(taskSet: TaskSet) {
    val tasks = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized {
      // 给每一个taskSet,都会创建一个TaskSetManager
      // TaskSetManager实际上,在后面,会负责他的那个TaskSet的任务执行状况的监视和管理
      val manager = createTaskSetManager(taskSet, maxTaskFailures)
      // 加入内存缓存中
      activeTaskSets(taskSet.id) = manager
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

      if (!isLocal && !hasReceivedTask) {
        starvationTimer.scheduleAtFixedRate(new TimerTask() {
          override def run() {
            if (!hasLaunchedTask) {
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources")
            } else {
              this.cancel()
            }
          }
        }, STARVATION_TIMEOUT, STARVATION_TIMEOUT)
      }
      hasReceivedTask = true
    }
    // sparkContext原理剖析的时候,创建TaskScheduler的时候,一件非常重要的事情,就是为TaskSchedulerImpl创建
    // 一个SparkDeploySchedulerBackend,这里的backend,指的就是之前创建好的SparkDeploySchedulerBackend,而且这个
    // backend是负责创建AppClient,向Master注册Application的
    backend.reviveOffers()
  }

看看TaskSetManager这个类

/**
  * 在TaskSchedulerImpl中,对一个单独的TaskSet的任务进行调度,这个类负责追踪每一个task,如果task失败的话,
  * 会负责重试task,直到超过重试的次数限制,并且会通过延迟调度,为这个TaskSet处理本地化调度机制。它的主要接口是resourceOffer,
  * 在这个接口中,TaskSet会希望在一个节点上运行一个任务,并且接受任务的状态改变消息,来知道它负责的task的状态改变了
  */
private[spark] class TaskSetManager(
    sched: TaskSchedulerImpl,
    val taskSet: TaskSet,
    val maxTaskFailures: Int,
    clock: Clock = new SystemClock())
  extends Schedulable with Logging {

看看backend.reviveOffers()方法,CoarseGrainedSchedulerBackend的reviveOffers()方法

  override def reviveOffers() {
    driverActor ! ReviveOffers
  }

CoarseGrainedSchedulerBackend这个类的,DriverActor这个类的ReviveOffers

      case ReviveOffers =>
        makeOffers()

看makeOffers()方法

    // Make fake resource offers on all executors
    def makeOffers() {
      // 第一步,调用TaskSchedulerImpl的resourceOffers()方法,执行任务分配算法,将各个task分配到executor上去
      // 第二步,分配好task到Executor之后,执行自己的的launchTasks()方法,将分配的task发送launchTask消息到对应的Executor上去,由Executor启动并执行task
      // 给resourceOffers方法传入的是这个Application所有可用的Executor,并且将其封装成了WorkerOffer,每个WorkerOffer代表了每个Executor可用的cpu资源数量
      launchTasks(scheduler.resourceOffers(executorDataMap.map { case (id, executorData) =>
        new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
      }.toSeq))
    }

首先看scheduler.resourceOffers()

  def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    var newExecAvail = false
    for (o <- offers) {
      executorIdToHost(o.executorId) = o.host
      activeExecutorIds += o.executorId
      if (!executorsByHost.contains(o.host)) {
        executorsByHost(o.host) = new HashSet[String]()
        executorAdded(o.executorId, o.host)
        newExecAvail = true
      }
      for (rack <- getRackForHost(o.host)) {
        hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
      }
    }

    // 首先,将可用的executor进行shuffle,也就是说,进行打散,从而做到,尽可能可以进行负载均衡
    // Randomly shuffle offers to avoid always placing tasks on the same set of workers.
    val shuffledOffers = Random.shuffle(offers)
    // Build a list of tasks to assign to each worker.
    // 然后针对WorkerOffer,创建一堆需要用的东西
    // 比如tasks,它可以理解为一个二维数组,即ArrayBuffer的元素又是一个ArrayBuffer,并且每个子ArrayBuffer的数量是固定的,也就是这个Executor可用的cpu数量
    val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
    val availableCpus = shuffledOffers.map(o => o.cores).toArray
    // 这个很重要,从rootPool中取出了排序的TaskSet,之前讲解TaskScheduler初始化的时候,创建完TaskSchedulerImpl、SparkDeploySchedulerBackend之后,执行一个initialize()
    // 方法,在这个方法中,其实会创建一个调度池,这里,相当于是说,所有提交的taskSet,首先呢,会放入这个调度池,然后再执行task分配算法的时候,会从这个调度池中,取出排好队的TaskSet
    val sortedTaskSets = rootPool.getSortedTaskSetQueue
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks))
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }

    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY

    // 这里,是任务分配算法的核心,双重for循环,遍历所有的taskSet,以及每一种本地化级别
    // 本地化级别有
    // PROCESS_LOCAL,进程本地化,rdd的partition和task,进入一个Executor内,速度当然快
    // NODE_LOCAL,dd的partition和task,不在一个Executor重,不在一个进程,但是在一个worker节点上
    // NO_PREF,无,没有所谓的本地化级别
    // RACK_LOCAL,机架本地化,至少rdd的partition和task,在一个机架上
    // ANY,任意的本地化级别
    // 这几种本地化级别 是从小到大排列的

    var launchedTask = false
    // 对每一个taskSet,从最好的一种本地化级别,开始遍历
    for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
      do {
        // 对当前taskSet,尝试优先使用最小的本地化级别,将taskset的task,在Executor上进行启动
        // 如果启动不了,那么就跳出这个do while循环,进入下一种本地化级别,也就是放大本地化级别
        // 以此类推,直到尝试将taskset在某些本地化级别下,在task在Executor上全部启动
        launchedTask = resourceOfferSingleTaskSet(
            taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
      } while (launchedTask)
    }

    if (tasks.size > 0) {
      hasLaunchedTask = true
    }
    return tasks
  }

继续看resourceOfferSingleTaskSet()方法

  private def resourceOfferSingleTaskSet(
      taskSet: TaskSetManager,
      maxLocality: TaskLocality,
      shuffledOffers: Seq[WorkerOffer],
      availableCpus: Array[Int],
      tasks: Seq[ArrayBuffer[TaskDescription]]) : Boolean = {
    var launchedTask = false
    // 遍历所有Executor
    for (i <- 0 until shuffledOffers.size) {
      val execId = shuffledOffers(i).executorId
      val host = shuffledOffers(i).host
      //  如果当前Executor的cpu数量大于每个task要使用的cpu数量,默认是1
      if (availableCpus(i) >= CPUS_PER_TASK) {
        try {
          // 调用taskSetManager的resourceOffer方法,去找到,在这个Executor,用这种本地化级别,taskset的哪些task可以启动
          // resourceOffer()方法,就是说,会去判断这个task在这个这个本地化级别,之前的等待时间是多少,如果说,本地化级别的等待时间在一定范围内
          // 那么就认为task使用本地化级别可以在executor上启动
          for (task <- taskSet.resourceOffer(execId, host, maxLocality)) {
            tasks(i) += task
            val tid = task.taskId
            taskIdToTaskSetId(tid) = taskSet.taskSet.id
            taskIdToExecutorId(tid) = execId
            executorsByHost(host) += execId
            availableCpus(i) -= CPUS_PER_TASK
            assert(availableCpus(i) >= 0)
            launchedTask = true
          }
        } catch {
          case e: TaskNotSerializableException =>
            logError(s"Resource offer failed, task set ${taskSet.name} was not serializable")
            // Do not offer resources for this task, but don't throw an error to allow other
            // task sets to be submitted.
            return launchedTask
        }
      }
    }
    return launchedTask
  }

接下来看launchTasks()方法

 // Launch tasks returned by a set of resource offers
    // 根据分配好的情况,去Executor上启动相应的task
    def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
      for (task <- tasks.flatten) {
        // 首先将每个Executor要执行的task信息,统一进行序列化操作
        val ser = SparkEnv.get.closureSerializer.newInstance()
        val serializedTask = ser.serialize(task)
        if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
          val taskSetId = scheduler.taskIdToTaskSetId(task.taskId)
          scheduler.activeTaskSets.get(taskSetId).foreach { taskSet =>
            try {
              var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
                "spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
                "spark.akka.frameSize or using broadcast variables for large values."
              msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
                AkkaUtils.reservedSizeBytes)
              taskSet.abort(msg)
            } catch {
              case e: Exception => logError("Exception in error callback", e)
            }
          }
        }
        else {
          // 找到对应的executor
          val executorData = executorDataMap(task.executorId)
          // 给executor上的资源,减去要使用的cpu资源
          executorData.freeCores -= scheduler.CPUS_PER_TASK
          // 向executor发送LaunchTask消息,来在executor上启动task
          executorData.executorActor ! LaunchTask(new SerializableBuffer(serializedTask))
        }
      }
    }

你可能感兴趣的:(41、Spark内核源码深度剖析之TaskScheduler原理剖析与源码分析)