- 《六月集训》(第二十三天)——字典树
EchoRouRou
leetcodec++leetcoe字典树
文章目录前言一、练习题目二、算法思路三、源码剖析前言欢迎大家积极在评论区留言发表自己的看法,知无不言,言无不尽,养成每天刷题的习惯,也可以自己发布优质的解题报告,供社区一同鉴赏,吸引一波自己的核心粉丝。今天是六月集训第二十三天:字典树一、练习题目472.连接词面试题17.15.最长单词二、算法思路1、472.连接词:题目有点难。还在从基础看起,2、面试题17.15.最长单词:三、源码剖析//472
- Aerospike
小的~~
nosqlAerospike
文章来源:拉勾教育Java高薪训练营第3期Aerospike介绍Aerospike(简称AS)是一个分布式,可扩展的键值存储的NoSQL数据库。T级别大数据高并发的结构化数据存储读写操作达微妙级,99%的响应可在1毫秒内实现采用混合架构,索引存储在内存中,而数据可存储在机械硬盘(HDD)或固态硬盘(SSD)上(也可存储在内存)AS内部在访问SSD屏蔽了文件系统层级,直接访问地址,保证了数据的读取速
- Spring Batch批处理操作与实践
面朝大海,春不暖,花不开
基础管理后台开发springbatch前端
SpringBatch是一个强大的批处理框架,专为处理大规模数据和执行复杂批处理任务而设计。它基于Spring框架构建,继承了Spring的许多优点,如依赖注入、事务管理等,同时提供了丰富的功能来简化批处理应用的开发。什么是批处理?批处理是指在后台运行的一系列操作,通常用于处理大量数据或执行长时间运行的任务。这些任务往往不需要用户交互,可以在非高峰时段运行,以减少对系统资源的影响。常见的批处理任务
- DeepSeek 混合专家(MoE)架构技术原理剖析
计算机学长
通用大语言模型人工智能架构
DeepSeek混合专家(MoE)架构技术原理剖析在人工智能快速发展的当下,大规模语言模型不断突破创新,DeepSeek混合专家(MoE)架构脱颖而出,成为业内关注焦点。本文将深入剖析其技术原理,为大家揭开它的神秘面纱。一、MoE架构概述(一)基本概念混合专家(MixtureofExperts,MoE)架构,简单来说,就像是一个专家团队。在这个团队里,每个专家都是一个小型神经网络,各自擅长处理特定
- 基于 GBase 数据库的海量数据处理与性能优化
big crab
数据库oracle
一、引言随着大数据时代的到来,海量数据的存储和高效处理成为各行业的核心需求。GBase系列数据库(包括GBase8a、GBase8s和GBase8c)以其强大的性能、灵活的存储架构以及高效的查询优化功能,成为处理大规模数据的理想选择。本文将从GBase数据库的特性出发,探讨如何在实际应用中进行海量数据的高效处理,同时提供相关代码示例,帮助开发者更好地理解和应用GBase数据库。二、GBase数据库
- 本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
Katie。
人工智能技术发展aideepseek人工智能人工智能大模型
前言随着人工智能技术的迅猛发展,大语言模型(LLM)在多个行业中的应用日益广泛,从自然语言处理、内容生成到智能客服、医疗诊断等领域,AI正在深刻改变传统的工作方式和业务流程。DeepSeek作为一家新兴的AI公司,凭借其高效的AI模型和开源的优势,迅速在竞争激烈的AI市场中脱颖而出。其模型不仅在性能上表现出色,还通过开源策略吸引了大量开发者和企业的关注,形成了一个活跃的社区生态。然而,随着AI技术
- 深入探讨:CME期货CBOT高频合约历史行情数据分析方法
hightick
外盘期货高频历史行情数据集数据分析数据挖掘金融python数据库
深入探讨:CME期货CBOT高频合约历史行情数据分析方法为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/19zhe1CCpDM56amDKO2nMwQ?pwd=4wpq提取码:4wpq请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。交易量与价格关系分析交易量与价格之间的关系
- 掌握LinkedIn营销技巧,让外贸客户主动找上门!
AIsocial
AI社媒引流王人工智能大数据
LinkedIn作为全球最大的职场社交平台,聚集了超过9亿名来自200多个国家的职业人士。对于外贸企业来说,LinkedIn不仅是展示公司形象的窗口,更是精准获取高价值客户的利器。今天,我们将分享一套LinkedIn营销的实操技巧,帮助你高效开发客户,让外贸生意更上一层楼!1.打造专业的个人和公司主页LinkedIn营销的第一步是树立专业形象。无论是个人账号还是公司主页,都需要具备吸引力和可信度。
- raspberry pi_书评:“ Raspberry Pi for Secret Agents”的使用效果不佳
cuml0912
游戏java人工智能pythonlinux
raspberrypi许多父母在Opensource.com上看到我女儿的文章,并经常问我:“您是如何使您的女儿开始使用RaspberryPi的?”一切都从RaspberryPi作为圣诞节礼物开始,而我们以RaspberryPi教育手册作为指南开始。作为免费下载,这是一个很好的入门入门。然后我们转到其他书籍,例如《RaspberryPi入门》,我开始注意到一些模式。这些书经常一遍又一遍地涉及相同的
- 电子书阅读在语言学习中的影响与未来趋势
火箭统
电子书EFL学习多文素养在线讨论阅读习惯
背景简介电子书作为一种新兴的阅读媒介,在教育领域开始被广泛应用。随着数字技术的迅猛发展,传统的阅读方式正逐渐被电子书、iPad、Kindle等数字阅读设备所取代。这不仅改变了人们的阅读习惯,也为教育模式带来了革命性的变化。电子书阅读的优势与挑战根据Hsin-chouHuang的研究,电子书阅读在教育中的应用具有明显的优势。首先,电子书能够提供更丰富的功能,如在线搜索、文本高亮、注释和多媒体内容等,
- AI创业公司的竞争策略
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI创业公司的竞争策略关键词:AI创业公司、竞争策略、市场环境、技术创新、融资策略、成功案例分析摘要:本文针对AI创业公司的竞争策略进行全面剖析,从行业背景、创业策略、市场营销、融资策略到运营管理,深入探讨AI创业公司在激烈市场竞争中如何立足并发展。通过成功案例分析,提供实战经验和策略建议,旨在帮助AI创业公司更好地应对挑战,实现可持续发展。《AI创业公司的竞争策略》目录大纲第一部分:行业背景与概
- 如何进行存储容量规划?
ScaleFlux锐钲
数据库大数据dba云计算
关于CSD3000:CSD3000是ScaleFlux推出的首款支持压缩的标准NVMeSSD.该产品采用先进的系统级芯片(SoC),和软件开发技术,实现了存储、内存和计算的有效连接,并加入了硬件计算加速引擎,来缓解数据拥堵,减轻CPU负载和服务器体系结构中的瓶颈,释放未被充分利用的资源。极大优化了NVMeSSD,提升了存储的能力。关于ScaleFlux:ScaleFlux成立于2014年,是大规模
- 深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
紫雾凌寒
智启前沿:AI洞察・创未来人工智能深度学习tensorflowpytorchai
在深度学习框架中,TensorFlow和PyTorch无疑是两大明星框架。前面两篇文章我们分别介绍了TensorFlow(点击查看)和PyTorch(点击查看)。它们引领着AI开发的潮流,吸引着无数开发者投身其中。但这两大框架究竟谁更胜一筹?是TensorFlow的全面与稳健,还是PyTorch的灵活与便捷?让我们一同深入剖析,探寻答案。在深度学习框架中,TensorFlow和PyTorch无疑是
- ZATA的文学和幽默知识积累
ZhangTao_zata
知识积累
雅文来源内容王阳明《传习录》心虽主于一身,而实管乎天下之理;理虽散在万事,而实不外于一人之心。马克·吐温一个会讲故事的人,比十个只会讲道理的人更有吸引力。名言世间所有相遇,都是久别重逢,不负相遇,不负离别。鲁迅名言真正的幽默,是从痛苦中开出的花朵。段子–努力这么久,终于考上了抑郁证;我不是无路可走,我还有死路一条;那些杀不死我的,还不如直接杀死我;
- MCU 阵营分析
Mcho_New
产品分析产品
主流的MCU阵营ST意法半导体便宜、高性能!有固件库可以方便开发,资料多。STM32F10x系列,样片在10元左右一个,20K内存、72MHz主频、各种外设,已经可以做很多事情了。更吸引人的是,他们家的控制器的固件库有通用性,熟悉了一个产品线的开发之后,比较容易能够切换到其它的产品线。说到通用性,所有基于相同核心的CPU其实都在某种程度上相通。如手机ARM内核。甚至在我看来,只要你是基于时钟(数字
- python分支结构说课_Python程序设计 循环结构说课稿
程籽籽
python分支结构说课
循环结构程序设计——实现复杂计算程序一、说教材1.教材地位分析教材是由湖北省中小学教材编写组编写的义务教育教科书《信息技术》。其中《循环结构程序设计》是初中信息技术课本第三册的第七单元“Python程序设计(下)”的第26课的内容。本节课的内容是在上节课选择结构的基础上进行的。循环结构作为Python程序设计的三大基本结构之一,有助于学生更好的解决生活中的实际问题,通过这节课的学习,学生会对循环结
- python分支结构说课_Python程序设计 选择结构说课稿
爱吃可颂
python分支结构说课
选择结构程序设计——偏胖还是偏瘦?一、说教材1.教材地位分析教材是由湖北省中小学教材编写组编写的义务教育教科书《信息技术》。其中《选择结构程序设计》是初中信息技术课本第三册的第七单元“Python程序设计(上)”的第25课的内容。本节课的内容是在上节课顺序结构的基础上进行的。选择结构作为Python程序设计的三大基本结构之一,有助于学生更好的解决生活中的实际问题,通过这节课的学习,学生会对顺序结构
- 《AI对话秘籍:5个Prompt Engineering核心技巧让DeepSeek输出质量翻倍》
Athena-H
PromptEngineering人工智能promptchatgptgptai
引言随着自然语言处理技术的飞速发展,像ChatGPT这样的AI对话系统已经广泛应用于客服、教育、创作等多个领域。然而,如何高效地与这些语言模型进行交互,获得准确、相关且高质量的回复,成为了应用中的一个关键挑战。这时,PromptEngineering(提示词工程)便成为了一项必不可少的技能。PromptEngineering的核心目标是通过优化与模型的输入互动方式,让模型生成更加符合预期的输出。在
- 高效高并发调度架构
之群害马
架构
以下是从架构层面为你提供的适合多核CPU、多GPU环境下API客户端、服务端高级调度,以实现高效并发大规模与用户交互的技术栈:通信协议gRPC:基于HTTP/2协议,具有高性能、低延迟的特点,支持二进制序列化(通常搭配Protobuf),非常适合高并发场景。它提供了流式通信和多路复用功能,可有效减少网络开销。常用于微服务之间的通信,例如机器学习模型服务与前端应用之间的交互。RSocket:是一种基
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 揭秘DeepSeek内幕:清华教授剖析AI模型技术原理
大模型.
人工智能chatgpt安全agigpt大模型deepseek
从ChatGPT到各种新兴的AI模型,每一次技术突破都能引发广泛的关注和讨论——而最近AI界的“新宠”,无疑是DeepSeek。在本文中,清华大学长聘副教授将深入剖析DeepSeekR1背后的大规模强化学习技术及其基本原理,并进一步展望大模型技术未来的发展方向。1、透过DeepSeekR1,看大模型技术的发展趋势今天我将从宏观角度为大家介绍DeepSeekR1所代表的大规模强化学习技术,及其基本原
- 云桌面主流架构解析与应用场景分析
一休哥助手
架构
引言随着云计算、大数据和虚拟化技术的快速发展,云桌面作为一种高效、安全、便捷的办公方式,逐渐被企业、教育和政府等多个领域广泛采用。云桌面通过虚拟化技术将计算资源集中管理,并将桌面操作系统、应用程序和数据存储在云端。用户通过终端设备访问云桌面,从而实现随时随地的灵活办公。云桌面架构的设计是其性能、安全性和用户体验的关键因素。目前主流的云桌面架构有多种类型,包括集中式架构、分布式架构、混合式架构等。本
- Hutool工具库使用记录
namelessmyth
Javajava
Hutool简介和ApacheCommons,Googleguava类似的工具包。但是国产的,有着完善的中文文档和代码中文注释。对于英文不好的程序猿,这点特别有吸引力。还有就是本人的一贯原则就是只要国产的和国外的水平相差不大的情况下,优先支持国产。本人的使用体验是:hutool集合了Apache和guava的优点,而且不依赖第三方jar包。举个例子来说,Hutool-log会自动按下面的顺序自动识
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 深度解析DeepSeek大模型的技术架构与创新点
程序员
大家好,我是一名DeepSeek大模型研究者,今天我想和大家分享一下DeepSeek大模型的核心技术架构和创新特点。作为国内领先的开源大模型,DeepSeek在架构设计和技术创新上都有其独特之处。让我们一起来揭开它的神秘面纱!一、基础架构概览DeepSeek的核心架构建立在Transformer的基础上,但进行了多项创新优化。我第一次接触DeepSeek时,就被它在模型结构上的精巧设计所吸引。1.
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 产品经理学习——AI产品
Li灿灿
产品经理学习人工智能
本篇文章,主要是针对目前不同类型AI公司的产品经理职责和AI产品经理的模型进行介绍。AI产品分类AI产品分为软件型和软硬件结合型,软件型的AI产品主要是具备理解、推理和决策能力的AI,如NLP(自然语言处理)系统或者创造类,创作型内容如音乐、艺术和写作等。软硬结合型AI产品一般和传统领域相关,如医疗AI、教育AI和零售AI等。有些公司是纯粹的AI公司,对应的特点是专注于做底层的算法,做芯片技术,纯
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- 跟着ai辅助学习vue3
IT、木昜
vue全家桶vueAI辅助学习前端框架学习
第一章:基础入门(1-2周)1.了解Vue3概述阅读官方文档简介访问Vue3官方文档,在首页或简介板块中,重点了解Vue3相较于Vue2的重大变革。比如,Vue3采用了Proxy实现响应式系统,在性能上有显著提升,尤其是在处理大规模数据时,数据劫持的效率更高。了解CompositionAPI的引入,它解决了OptionsAPI在代码复用和逻辑组织上的痛点,让代码结构更加清晰,易于维护和扩展。例如,
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$