在实际项目中,需要存储大于等于三维的矩阵,而平常中我们使用Eigen::MatrixXd二维数据,这里我们使用Eigen::Tensor来定义
#include
官方文档
// 定义一个2x3x4大小的矩阵
Eigen::Tensor<float, 3> a(2, 3, 4);
// 初始化为0
a.setZero();
// 访问元素
a(0, 1, 0) = 12.0f;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 4; k++) {
std::cout << a(i, j, k) << " ";
}
std::cout << std::endl;
}
std::cout << std::endl << std::endl;
}
// 输出维度
std::cout<<a.dimension(0)<<" "<<a.dimension(1)<<" "<<a.dimension(2)<<std::endl;
上面输出结果
0 0 0 0
12 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
2 3 4
参考官方解释
The fixed sized equivalent of Eigen::Tensor t(3, 5, 7); is Eigen::TensorFixedSize> t;
这里我们定义
// 固定 大小的Size 2x3x4
Eigen::TensorFixedSize<float, Eigen::Sizes<2, 3, 4>> b;
// 每个元素都设置固定值
b.setConstant(3.f);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 4; k++) {
std::cout << b(i, j, k) << " ";
}
std::cout << std::endl;
}
std::cout << std::endl << std::endl;
}
结果如下
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3
参考从零开始编写深度学习库(四)Eigen::Tensor学习使用及代码重构
1.维度
Eigen::Tensor<float, 2> a(3, 4);
std::cout << "Dims " << a.NumDimensions;
//=> Dims 2
Eigen::Tensor<float, 2> a(3, 4);
int dim1 = a.dimension(1);
std::cout << "Dim 1: " << dim1;
//=> Dim 1: 4
2.形状
Eigen::Tensor<float, 2> a(3, 4);
const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
std::cout << "Dim size: " << d.size << ", dim 0: " << d[0]
<< ", dim 1: " << d[1];
//=> Dim size: 2, dim 0: 3, dim 1: 4
3.矩阵元素个数
Eigen::Tensor<float, 2> a(3, 4);
std::cout << "Size: " << a.size();
//=> Size: 12
4.初始化
/// 1.
// setConstant(const Scalar& val),用于把一个矩阵的所有元素设置成一个指定的常数。
Eigen::Tensor<string, 2> a(2, 3);
a.setConstant("yolo");
std::cout << "String tensor: " << endl << a << endl << endl;
//=>
// String tensor:
// yolo yolo yolo
// yolo yolo yolo
/// 2.
// setZero() 全部置零
a.setZero();
/// 3.
// setRandom() 随机初始化
a.setRandom();
std::cout << "Random: " << endl << a << endl << endl;
//=>
//Random:
// 0.680375 0.59688 -0.329554 0.10794
// -0.211234 0.823295 0.536459 -0.0452059
// 0.566198 -0.604897 -0.444451 0.257742
/// 4.
// setValues({..initializer_list}) 从列表、数据初始化
Eigen::Tensor<float, 2> a(2, 3);
a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
std::cout << "a" << endl << a << endl << endl;
//=>
// a
// 0 1 2
// 3 4 5
//如果给定的数组数据,少于矩阵元素的个数,那么后面不足的元素其值不变:
Eigen::Tensor<int, 2> a(2, 3);
a.setConstant(1000);
a.setValues({{10, 20, 30}});
std::cout << "a" << endl << a << endl << endl;
//=>
// a
// 10 20 30
// 1000 1000 1000
4.运算
参考Eigen Tensor详解【二】
4.1 一元运算
operator-() 求相反数
sqrt() 平方根
rsqrt() 逆平方根
square() 平方
inverse()求逆
exp()指数
log() log运算
abs() 绝对值
pow(Scalar exponent)
operator * (Scalar scale) 乘以某个值
void testUnary()
{
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({ {0, 1, 8}, {27, 64, 125} });
Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
Eigen::Tensor<double, 2> sqrt = a.cast<double>().sqrt();
Eigen::Tensor<double, 2> rsqrt = a.cast<double>().rsqrt();
Eigen::Tensor<double, 2> square = a.cast<double>().square();
Eigen::Tensor<double, 2> inverse = a.cast<double>().inverse();
Eigen::Tensor<double, 2> exp = a.cast<double>().exp();
Eigen::Tensor<double, 2> log = a.cast<double>().log();
Eigen::Tensor<double, 2> abs = a.cast<double>().abs();
Eigen::Tensor<int, 2> multiply = a * 2;
std::cout << "a" << std::endl << a << std::endl <<std:: endl;
}
4.2 二元运算
operator+(const OtherDerived& other)
operator-(const OtherDerived& other)
operator*(const OtherDerived& other)
operator/(const OtherDerived& other)
cwiseMax(const OtherDerived& other) //返回与原tensor同类型,同尺寸的tensor,且以两个原tensor的最大值填充
cwiseMin(const OtherDerived& other)
//返回与原tensor同类型,同尺寸的tensor,且以两个原tensor的最小值填充
operator&&(const OtherDerived& other)
operator||(const OtherDerived& other)
operator<(const OtherDerived& other)
operator<=(const OtherDerived& other)
operator>(const OtherDerived& other)
operator>=(const OtherDerived& other)
operator==(const OtherDerived& other)
operator!=(const OtherDerived& other)
void testBinary()
{
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({ {0, 1, 8}, {27, 64, 125} });
Eigen::Tensor<int, 2> b = a * 3;
std::cout << "a" << std::endl << a << std::endl << std::endl;
std::cout << "b" << std::endl << b << std::endl << std::endl;
std::cout << "a+b" << std::endl << a + b << std::endl << std::endl;
std::cout << "a-b" << std::endl << a - b << std::endl << std::endl;
std::cout << "a*b" << std::endl << a * b << std::endl << std::endl;
std::cout << "a.cwiseMax(b)" << std::endl <<a.cwiseMax(b) << std::endl << std::endl;
std::cout << "b.cwiseMax(a)" << std::endl << b.cwiseMax(a) << std::endl << std::endl;
std::cout << "a.cwiseMin(b)" << std::endl << a.cwiseMin(b) << std::endl << std::endl;
std::cout << "b.cwiseMin(a)" << std::endl << b.cwiseMin(a) << std::endl << std::endl;
}
4.3 三元运算和降维运算
看参考链接Eigen Tensor详解【二】
参考Eigen构造使用三维矩阵
如果定义多维数据也可以使用Matrix模板来自定义,
Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>
Eigen::Matrix<Eigen::MatrixXd,1,1> a;
Eigen::Matrix<Eigen::Matrix<double,1,5>,1,1> a;
Eigen::Matrix<Eigen::MatrixXd, 1, 1> a;//声明a,一个1*1矩阵
Eigen::MatrixXd b; //声明b
b.setZero(1, 5); //对b初始化
b << 1, 2, 3, 4, 5;//对b赋值
a(0, 0) = b;//对a(0,0)赋值
std::cout << "a(0,0): " << a(0, 0) << std::endl;//输出a(0,0)
std::cout << "b: " << b << std::endl;//输出b
int row = a(0, 0).rows();//row为a(0,0)处矩阵的行维数
int col = a(0, 0).cols();//col为a(0,0)处矩阵的列维数
std::cout << "row: " << row << " col: " << col << std::endl;//输出row和col值
https://blog.csdn.net/hjimce/article/details/71710893
https://blog.csdn.net/fengshengwei3/article/details/103591178
http://eigen.tuxfamily.org/index.php?title=Tensor_support#Using_the_Tensor_module
https://eigen.tuxfamily.org/dox/unsupported/classEigen_1_1TensorFixedSize.html
https://zhuanlan.zhihu.com/p/148019818