- python+flask实现360全景图和stl等多种格式模型浏览
mosquito_lover1
python
1.安装依赖pipinstallflask2.创建Flask应用创建一个基本的Flask应用,并设置路由来处理不同的文件类型。fromflaskimportFlask,render_template,send_from_directoryapp=Flask(__name__)#设置静态文件路径app.static_folder='static'@app.route('/')defindex():r
- 深度解析AI智能助手系统架构:数据接入到平台管理的全景指南
AI大模型-搬运工
人工智能系统架构大语言模型深度学习自然语言处理AI智能助手大模型
在数字化转型的大潮中,AI智能助手在帮助企业优化运营、提高决策效率、增强用户体验方面发挥着不可替代的作用。本篇文章将带您深入了解一个典型的AI智能助手系统架构,并提供每个模块的具体实现方案,包括数据接入、模型配置、平台管理等核心模块,帮助企业更好地构建智能化业务流程。一、AI智能助手的核心功能及实现方案AI智能助手的核心功能包括自然语言问答、图表可视化、多维钻取、导出与收藏、需求理解与过程验证、用
- AI 大模型应用数据中心的数据分析架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心的数据分析架构》关键词:数据中心、AI大模型、数据分析、架构设计、应用实践摘要:本文深入探讨了AI大模型在数据中心数据分析架构中的应用,从数据中心背景、AI大模型架构与技术、数据处理与分析技术、AI大模型应用与实践等多个方面,全面解析了AI大模型如何助力数据中心实现高效数据分析和智能处理,为读者提供了系统的理论指导和实际案例分析。第一部分:数据中心背景与AI大模型概述第1章
- HiPixel开源AI驱动的图像超分辨率的原生macOS 应用程序,使用 SwiftUI 构建并利用 Upscayl 强大的 AI 模型
2301_78755287
swiftuiiosswift人工智能开源图像处理
一、软件介绍文末提供程序和源码下载HiPixel是一个开源程序基于SwiftUI构建的macOS原生应用程序,用于AI驱动的图像超分辨率,并利用Upscayl的强大AI模型。二、软件特征具有SwiftUI界面的原生macOS应用程序使用AI模型进行高质量图像放大通过GPU加速实现快速处理支持各种图像格式用于自动处理新添加图像的文件夹监控现代、直观的用户界面三、为什么选择HiPixel?虽然Upsc
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 为什么Redis对大 Key(Large Key)和大对象不友好?怎样优化?
风一样的树懒
redis数据库缓存
你好,我是风一样的树懒,一个工作十多年的后端专家,曾就职京东、阿里等多家互联网头部企业。公众号“吴计可师”,已经更新了近百篇高质量的面试相关文章,喜欢的朋友欢迎关注点赞Redis对大Key(LargeKey)和大对象不友好,主要源于其内存管理模型、单线程架构和数据结构特性。以下从性能影响、内存管理、集群限制三个维度解析原因,并提供优化方案:一、Redis对大Key不友好的核心原因1.性能瓶颈单线程
- SQLMesh 系列教程:解锁SQLMesh的宏与变量魔法
梦想画家
#python数据分析工程sqlmesh数据工程分析工程
在数据库流水线开发中,代码复用与动态配置是提升效率的核心诉求。SQLMesh以其独特的宏系统与用户定义变量机制,重新定义了SQL生成的灵活性。与传统模板引擎不同,SQLMesh的宏并非简单的字符串替换,而是基于语义理解的智能代码重构——通过sqlglot库解析SQL结构,结合Python逻辑处理能力,让用户能够以声明式语法实现复杂查询的动态组装。引言无论是全局配置、网关级参数还是模型内局部变量,S
- Spring MVC 面试题
A逍遥人世欢
面试springmvcjava
概述什么是SpringMVC?简单介绍下你对SpringMVC的理解?SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架,通过把模型-视图-控制器分离,将web层进行职责解耦,把复杂的web应用分成逻辑清晰的几部分,简化开发,减少出错,方便组内开发人员之间的配合。SpringMVC的优点可以支持各种视图技术,而不仅仅局限于JSP;与Spring框架集成(如I
- CesiumEarth v1.10 更新,支持参数值从矢量属性中动态读取
limit0075
arcgis低代码web3chrome旅游
发布时间:2025年03月14日支持动态读取参数值如点的大小、高度、颜色,线的宽度、颜色,面的颜色、高度等等,如此点线面的表现样式可以根据属性中的字段来决定,表现形式更加多样化。矢量图层参数升级部分矢量参数可以从字段中动态获取下面是一些表达城市建筑模型的简单例子,数据源来自矢量面(而非三维模型),在面图层中绘制了几个建筑底面,以白模的形式进行渲染,高度、颜色等参数从字段中动态读取动态参数的设置方法
- 软件架构师--数据库系统
一蓑烟雨*任平生
软件架构师数据库1024程序员节
一、分布式数据库1.分片透明性分片透明性:分不分片,用户感受不到(不关心如何分片存储)。位置透明性:数据存放在哪里,用户不用管(用户无需知道数据存放的物理位置)复制透明性:不关心结点的复制情况。局部数据模型透明性(逻辑透明):用户或应用程序无需知道局部场地使用的是哪种数据模型。2.两阶段提交协议2PC2PC事务提交的两个阶段①表决阶段,目的是形成一个共同的决定②执行阶段,目的是实现这个协调者的决定
- 院士领衔、IEEE Fellow 坐镇,清华、上交大、复旦、同济等专家齐聚 2025 全球机器学习技术大会
CSDN资讯
机器学习人工智能
随着Manus出圈,OpenManus、OWL迅速开源,OpenAI推出智能体开发工具,全球AI生态正经历新一轮智能体革命。大模型如何协同学习?大模型如何自我进化?新型强化学习技术如何赋能智能体?围绕这些关键问题,由CSDN&Boolan联合举办的「2025全球机器学习技术大会」将于4月18-19日在上海隆重举行。大会云集院士、10所高校科研工作者、近30家一线科技企业技术实战专家组成的超50位重
- 嵌入式软件工程师为什么要撰写博客?——开启技术进阶与职业发展的双重大门
Electron-er
软件需求嵌入式硬件架构单片机人工智能
目录一、技术沉淀:构建嵌入式知识复利系统知识沉淀的三层架构二、职业发展:量化个人技术品牌价值职业价值评估模型三、社区贡献:推动嵌入式技术生态演进知识传播的涟漪效应四、写作方法论:打造专业级技术博客内容开发五步法可视化增强技术五、数据验证:博客投资回报率分析六、实践指南:从入门到专家的路径规划博客运营路线图关键成功要素结语一、技术沉淀:构建嵌入式知识复利系统在嵌入式开发领域,寄存器操作、RTOS调度
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- React篇之three渲染
这个一个非常哈
react.js前端前端框架
需求:拖拽右侧面板,里面的three模型能够自适应import{useEffect,useState,useRef}from'react'import'./App.css'import*asTHREEfrom'three';import{GLTFLoader}from'three/addons/loaders/GLTFLoader.js';import{debounce}from'lodash';
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- DeepSeek R1 本地部署实战教程来了,带可视化界面,非常详细!
java
大家好,我是R哥。虽然DeepSeek官方提供了可视化聊天界面,但稳定性实在太差了,动不动就服务繁忙,根本没办法正常使用。另外,对于一些对数据隐私、实时性能要求较高的场景,本地部署也是不可避免的选择。那么,如何本地部署DeepSeekR1的模型?本篇,开干!相关阅读:DeepSeek-R1本地部署配置清单DeepSeek-R11.5b、7b、8b、14b、32b、70b、671b都是什么鬼?如何部
- python进程和线程之间通信_python进程和线程通信
weixin_39718890
python进程和线程之间通信
1,线程(Thread)使用多线程可以有效的利用CPU资源(Python例外)。然而多线程所带来的程序的复杂度也不可避免,尤其是对竞争资源的同步问题。然而在python中由于使用了全局解释锁(GIL)的原因,代码并不能同时在多核上并发的运行,也就是说,Python的多线程不能并发,使用多线程来改进自己的Python代码后,程序的运行效率却下降了。实际上使用多线程的编程模型是很困难的,程序员很容易犯
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- kotlin与MVVM的结合使用总结(三)
每次的天空
kotlin前端开发语言
在MVVM(Model-View-ViewModel)架构中,ViewModel(VM层)起到了连接视图(View)和数据模型(Model)的桥梁作用。它负责处理业务逻辑、管理数据状态,并将数据以一种可观察的方式提供给视图。以下将深入讲解在Kotlin中如何实现MVVM的VM层,并结合代码进行说明。创建ViewModel类ViewModel类负责处理业务逻辑和管理数据状态,并将数据以LiveDat
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- 深入理解信息检索之BM25算法
Lunar*
算法与优化自然语言处理人工智能
1.BM25算法简介BM25算法,全称为"BestMatching25",是由StephenRobertson和KarenSpärckJones在1990年代初基于早期的概率排名模型(如二元独立检索模型)发展而来。它通过一种概率论的方法来衡量文档与用户查询之间的相关性。2.BM25的核心原理BM25算法的核心在于两个主要的概念:逆文档频率(IDF)和词频(TF)调整。逆文档频率(IDF):IDF用
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- ddddocr识别图片中的汉字
雪小妮
python
ddddocr识别图片中的汉字importddddocrfromioimportBytesIOfromPILimportImageurl='图片地址'resp=requests.get(url)img=Image.open(BytesIO(resp.content))#初始化OCR模型#创建DdddOcr对象并初始化模型ocr=ddddocr.DdddOcr()#调用recognize函数进行图像
- LibreTranslate的本地部署与应用服务开发
一望无际的大草原
高级数据应用后端人工智能大模型翻译源码部署
最近在关注大模型预训练文章和应用服务开发,有时候需要借助翻译工具,使用起来都不太方便,就找了一下类似的常见语言的翻译方案,无意中看到一个开源翻译方案(即LibreTranslate),对于通用和计算机类内容的翻译效果还是不错的,因此就对开源翻译代码进行了本地部署和应用服务开发及测试。主要对源码的启动参数、api服务、认证服务和访问权限等内容进行了补充完善,并将依赖的翻译argos-translat
- Node.js Web 模块详解
froginwe11
开发语言
Node.jsWeb模块详解引言Node.js作为一款流行的JavaScript运行环境,以其高性能、事件驱动和非阻塞I/O模型而闻名。在Node.js中,模块是构建应用程序的基础,也是其强大的关键所在。本文将详细介绍Node.js的Web模块,包括其基本概念、常用模块及其应用。模块的概念在Node.js中,模块是一种组织代码的方式,它将代码分割成独立的、可复用的部分。模块不仅可以减少代码的冗余,
- 验证码识别:使用OCR技术识别图形验证码详解
数据知道
2025年爬虫和逆向教程ocrpython爬虫OCR识别验证码识别图片验证码
文章目录一、基本原理二、所需工具2.1Python环境2.2图像处理库2.3OCR引擎2.4Python接口三、实现步骤3.1获取验证码图像3.2图像预处理3.3使用OCR进行字符识别3.4基本OCR识别样例四、提高识别准确率的方法4.1字符分割4.2使用深度学习模型4.3数据增强4.4集成多个OCR引擎五、实际应用中的注意事项六、总结验证码(CAPTCHA)是一种用于区分人类用户和自动化程序的安
- MongoDB在Spring商城用户行为记录中的应用
小小初霁
mongodbspring数据库
一、MongoDB的优势灵活Schema用户行为数据结构多变(如点击、搜索、下单),MongoDB的文档模型无需固定字段,适应快速迭代。高吞吐写入支持批量插入,适合高并发场景(如秒杀活动的用户操作记录)。复杂查询优化支持聚合管道、地理空间查询、全文索引,便于多维分析。水平扩展通过分片(Sharding)应对海量数据存储。二、用户行为数据建模1.基础行为记录集合(如user_actions){"us
- ollama 指定安装路径 设置模型路径
波格斯特
语言模型
在Windows系统中,要自定义Ollama的安装路径,可以通过以下步骤实现:一、安装阶段指定路径手动创建目标目录在非系统盘(如D盘、E盘)创建安装目录,例如D:\ProgramFiles\Ollama或E:\MySoftware\Ollama。通过命令行安装将Ollama安装包(如OllamaSetup.exe)放入目标目录。在目标目录打开CMD窗口:按住Shift键右键点击空白处,选择“在此处
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟