方法
在类和对象篇中,我们了解到,方法存放在类中.那么问题来了.方法长啥样呢?
method_t
struct method_t {
struct big {
SEL name;
const char *types;
MethodListIMP imp;
};
}
从源码中,我们得知objc_class中有一个类型为method_array_t的二位数组的成员methods.扒开method_array_t的类型,我们找到了最终的method_t,就是方法函数本身的样子.可以看到.一个method_t中包含3个属性
- name:方法名
- types:编码(包含参数,返回值类型).TypeEncoding的方式
- imp:方法实现
TypeEncoding
由苹果定制的一系列方法返回值类型,以及参数类型的编码规则.如下图
OC方法调用机制
objc_msgSend
OC中,方法调用最终转换为objc_msgSend调用.这种方式称为 消息机制,即发送消息给方法调用者.
消息接收者(receiver):调用方法的对象
-
消息名称:@selector(xx)
[a foo] //实例方法
objc_msgSend(a, @selector(foo))
[A foo] //类方法
objc_msgSend(objc_getClass("A"),@selector(foo))
objc_msgSend主要分为三个阶段
- 消息发送
- 动态方法解析
- 消息转发
消息发送
苹果开放的源码中,objc_msgsend以汇编的方式实现.汇编
ENTRY _objc_msgSend
UNWIND _objc_msgSend, NoFrame
cmp p0, #0 // nil check and tagged pointer check
#if SUPPORT_TAGGED_POINTERS
b.le LNilOrTagged // (MSB tagged pointer looks negative)
#else
b.eq LReturnZero
#endif
ldr p13, [x0] // p13 = isa
GetClassFromIsa_p16 p13, 1, x0 // p16 = class
LGetIsaDone:
// calls imp or objc_msgSend_uncached
CacheLookup NORMAL, _objc_msgSend, __objc_msgSend_uncached
#if SUPPORT_TAGGED_POINTERS
LNilOrTagged:
b.eq LReturnZero // nil check
GetTaggedClass
b LGetIsaDone
// SUPPORT_TAGGED_POINTERS
#endif
LReturnZero:
// x0 is already zero
mov x1, #0
movi d0, #0
movi d1, #0
movi d2, #0
movi d3, #0
ret
END_ENTRY _objc_msgSend
LNilOrTagged
如果消息接收者是nil,直接return
CacheLookup
确定消息接收者不为空,查找缓存.如果缓存命中,调用_objc_msgSend,如果未命中.调用__objc_msgSend_uncached再调用MethodTableLookup,再调用_lookUpImpOrForward
lookUpImpOrForward
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
{
for (unsigned attempts = unreasonableClassCount();;) {
if (curClass->cache.isConstantOptimizedCache(/* strict */true)) {
#if CONFIG_USE_PREOPT_CACHES
imp = cache_getImp(curClass, sel);
if (imp) goto done_unlock;
curClass = curClass->cache.preoptFallbackClass();
#endif
} else {
// curClass method list.
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp(false);
goto done;
}
if (slowpath((curClass = curClass->getSuperclass()) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
// No implementation found. Try method resolver once.
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
done:
if (fastpath((behavior & LOOKUP_NOCACHE) == 0)) {
#if CONFIG_USE_PREOPT_CACHES
while (cls->cache.isConstantOptimizedCache(/* strict */true)) {
cls = cls->cache.preoptFallbackClass();
}
#endif
log_and_fill_cache(cls, imp, sel, inst, curClass);
}
done_unlock:
runtimeLock.unlock();
if (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {
return nil;
}
return imp;
}
这里我截取了lookUpImpOrForward的部分代码.可以得出.
- 1.cache_getImp从类的缓存方法列表寻找,若命中,直接返回imp,
- 2.未命中,调用getMethodNoSuper_nolock尝试从类的方法列表中查找方法.
- 2.1命中,则调用cache_t::insert将方法缓存到消息接收者缓存列表中,并返回imp供消息接收者调用.
- 2.2未命中,则找到父类,重新执行步骤1,
- 2.3若未命中,执行2.2
- 2.直到父类为nil时,imp未命中,则进入动态解析resolveMethod_locked
getMethodNoSuper_nolock
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
static method_t *
search_method_list_inline(const method_list_t *mlist, SEL sel)
{
int methodListIsFixedUp = mlist->isFixedUp();
int methodListHasExpectedSize = mlist->isExpectedSize();
if (fastpath(methodListIsFixedUp && methodListHasExpectedSize)) {
return findMethodInSortedMethodList(sel, mlist);
} else {
// Linear search of unsorted method list
if (auto *m = findMethodInUnsortedMethodList(sel, mlist))
return m;
}
}
可以看到搜索方法列表的search_method_list_inline方法中,对已经排好序的方法列表是进行二分查找.而未排序的,则采用遍历查找
动态方法解析
resolveMethod_locked
static NEVER_INLINE IMP
resolveMethod_locked(id inst, SEL sel, Class cls, int behavior)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
runtimeLock.unlock();
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
resolveInstanceMethod(inst, sel, cls);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
resolveClassMethod(inst, sel, cls);
if (!lookUpImpOrNilTryCache(inst, sel, cls)) {
resolveInstanceMethod(inst, sel, cls);
}
}
// chances are that calling the resolver have populated the cache
// so attempt using it
return lookUpImpOrForwardTryCache(inst, sel, cls, behavior);
}
动态解析时,根据类或者元类属性来分别调用resolveInstanceMethod,resolveClassMethod
实现动态方法解析
每一个NSObject类,都存在下述方法供我们处理动态方法解析.
+ (BOOL)resolveClassMethod:(SEL)sel OBJC_AVAILABLE(10.5, 2.0, 9.0, 1.0, 2.0);
+ (BOOL)resolveInstanceMethod:(SEL)sel OBJC_AVAILABLE(10.5, 2.0, 9.0, 1.0, 2.0);
那么怎么处理呢?上代码吧
@interface Test : NSObject
+ (void)test;
- (void)test;
@end
@implementation Test
+ (BOOL)resolveClassMethod:(SEL)sel {
if (sel == @selector(test)) {
Method method = class_getClassMethod(self, @selector(handleResolveClassMethod));
class_addMethod(object_getClass(self), sel, method_getImplementation(method), method_getTypeEncoding(method));
return YES;
}
return [super resolveClassMethod:sel];
}
+ (void)handleResolveClassMethod {
NSLog(@"%s",__func__);
}
+ (BOOL)resolveInstanceMethod:(SEL)sel {
if (sel == @selector(test)) {
Method method = class_getInstanceMethod(self, @selector(handleResolveInstanceMethod));
class_addMethod(self, sel, method_getImplementation(method), method_getTypeEncoding(method));
return YES;
}
return [super resolveInstanceMethod:sel];
}
- (void)handleResolveInstanceMethod {
NSLog(@"%s",__func__);
}
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
[Test test];
[[Test new] test];
}
return 0;
}
值得注意的是.类方法存在元类里面.所以用runtime动态添加类方法时,记得要找到类的元类进行添加.
而如果是添加实例方法,则直接传入self即可.
当我们动态为类添加了对应的方法实现后.会重新走一次objc_msgSend
_lookUpImpTryCache
ALWAYS_INLINE
static IMP _lookUpImpTryCache(id inst, SEL sel, Class cls, int behavior)
{
runtimeLock.assertUnlocked();
if (slowpath(!cls->isInitialized())) {
// see comment in lookUpImpOrForward
return lookUpImpOrForward(inst, sel, cls, behavior);
}
IMP imp = cache_getImp(cls, sel);
if (imp != NULL) goto done;
#if CONFIG_USE_PREOPT_CACHES
if (fastpath(cls->cache.isConstantOptimizedCache(/* strict */true))) {
imp = cache_getImp(cls->cache.preoptFallbackClass(), sel);
}
#endif
if (slowpath(imp == NULL)) {
return lookUpImpOrForward(inst, sel, cls, behavior);
}
done:
if ((behavior & LOOKUP_NIL) && imp == (IMP)_objc_msgForward_impcache) {
return nil;
}
return imp;
}
从方法可以看出.实现动态方法解析后,也是重新走消息发送的流程.先从方法缓存列表找起.再走lookUpImpOrForward
到这一步,动态方法解析基本走完.如果我们没有实现动态方法解析的话,就会进入第三阶段.消息转发
消息转发
消息转发
找遍了源码.也找不到消息转发相关的东西.但是从最终崩溃的调用栈来看.
*** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '+[Test test]: unrecognized selector sent to class 0x100008208'
*** First throw call stack:
(
0 CoreFoundation 0x00007fff206206af __exceptionPreprocess + 242
1 libobjc.A.dylib 0x00000001002fbb80 objc_exception_throw + 48
2 CoreFoundation 0x00007fff206a2bdd __CFExceptionProem + 0
3 CoreFoundation 0x00007fff2058807d ___forwarding___ + 1467
4 CoreFoundation 0x00007fff20587a38 _CF_forwarding_prep_0 + 120
5 KCObjcBuild 0x0000000100003ee5 main + 53
6 libdyld.dylib 0x00007fff204c9621 start + 1
)
看到了forwarding,进入该调用栈的汇编.发现有一句注释讲到未实现methodSignatureForSelector,那我们尝试实现一下.
0x7fff20587fbe <+1276>: leaq 0x5febb1ab(%rip), %rsi ; @"*** NSForwarding: warning: object %p of class '%s' does not implement methodSignatureForSelector: -- did you forget to declare the superclass of '%s'?"
methodSignatureForSelector
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector
可以看到这个方法需要返回一个NSMethodSignature.查看该类的初始化方法,我们需要传入方法实现的Method_t的types参数.也就是typeEncoding.那我们试试实现一下.我们在Test类中添加如下代码,然后运行
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector {
if (aSelector == @selector(test)) {
return [NSMethodSignature signatureWithObjCTypes:"v16@0:8"];
}
return [super methodSignatureForSelector:aSelector];
}
运行过后继续报错.继续输出调用栈.
*** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '+[Test test]: unrecognized selector sent to class 0x100008258'
*** First throw call stack:
(
0 CoreFoundation 0x00007fff206206af __exceptionPreprocess + 242
1 libobjc.A.dylib 0x00000001002fbb80 objc_exception_throw + 48
2 CoreFoundation 0x00007fff206a2bdd __CFExceptionProem + 0
3 libobjc.A.dylib 0x0000000100350957 +[NSObject forwardInvocation:] + 103
4 CoreFoundation 0x00007fff20587e07 ___forwarding___ + 837
5 CoreFoundation 0x00007fff20587a38 _CF_forwarding_prep_0 + 120
6 KCObjcBuild 0x0000000100003ea3 main + 51
7 libdyld.dylib 0x00007fff204c9621 start + 1
)
forwardInvocation
此时可以看到.多了一个[NSObject forwardInvocation:].
+ (void)forwardInvocation:(NSInvocation *)invocation {
[self doesNotRecognizeSelector:(invocation ? [invocation selector] : 0)];
}
- (void)forwardInvocation:(NSInvocation *)invocation {
[self doesNotRecognizeSelector:(invocation ? [invocation selector] : 0)];
}
// Replaced by CF (throws an NSException)
+ (void)doesNotRecognizeSelector:(SEL)sel {
_objc_fatal("+[%s %s]: unrecognized selector sent to instance %p",
class_getName(self), sel_getName(sel), self);
}
进入NSObject的源码中发现.调用了doesNotRecognizeSelector方法.最终发现了万恶之源...
就是每次崩溃时输出的unrecognized selector sent to class错误
NSInvocation
@interface NSInvocation : NSObject
+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)sig;
@property (readonly, retain) NSMethodSignature *methodSignature;
- (void)retainArguments;
@property (readonly) BOOL argumentsRetained;
@property (nullable, assign) id target;
@property SEL selector;
- (void)getReturnValue:(void *)retLoc;
- (void)setReturnValue:(void *)retLoc;
- (void)getArgument:(void *)argumentLocation atIndex:(NSInteger)idx;
- (void)setArgument:(void *)argumentLocation atIndex:(NSInteger)idx;
- (void)invoke;
- (void)invokeWithTarget:(id)target;
@end
我们在forwardInvocation中加入断点.看看anInvocation放了什么东西.
(lldb) po anInvocation
return value: {v} void
target: {@} 0x100008298
selector: {:} test
(lldb) po 0x100008298
Test
可以看到.anInvocation里面放了要执行的方法名以及执行它的target.如果我们此时调用invoke.那还是会继续报找不到方法错误.那么怎么解决呢.如果我们让其他实现了test方法的类来作为target.是不是就可以呢.让我们试试
@interface Test1 : NSObject
@end
@implementation Test1
+ (void)test {
NSLog(@"%s",__func__);
}
@end
@interface Test : NSObject
+ (void)test;
@end
@implementation Test
+ (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector {
if (aSelector == @selector(test)) {
return [NSMethodSignature signatureWithObjCTypes:"v16@0:8"];
}
return [super methodSignatureForSelector:aSelector];
}
+ (void)forwardInvocation:(NSInvocation *)anInvocation {
[anInvocation invokeWithTarget:[Test1 class]];
}
@end
int main(int argc, const char * argv[]) {
@autoreleasepool {
[Test test];
}
return 0;
}
我们发现.最终通过消息转发.Test1成为了消息接收者并完成了方法的调用.到此消息转发就结束了.