- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- AI人工智能浪潮中文心一言的独特优势
AI人工智能浪潮中文心一言的独特优势:为什么它是中国市场的“AI主力军”?关键词:文心一言,AI大模型,中文处理,多模态融合,产业落地,安全可控,百度ERNIE摘要:在全球AI大模型浪潮中,百度文心一言(ERNIEBot)凭借“懂中文、会多模态、能落地、守规矩”的四大核心优势,成为中国市场最具竞争力的AI产品之一。本文将用“超级大脑”的比喻,从中文理解、多模态能力、产业生态融合、安全可控性四个维度
- LLM Agent在多模态任务中的推理机制详解
文章目录一、引言二、多模态LLMAgent的基本架构2.1系统组成2.2工作流程图三、多模态表示与对齐3.1跨模态嵌入空间3.2模态对齐技术四、多模态推理策略4.1基于提示的推理(Prompt-basedReasoning)4.2多模态思维链(CoT)推理4.3多模态工具使用五、实现案例:多模态问答系统5.1系统架构5.2示例应用六、高级多模态推理技术6.1多模态递归推理6.2多模态记忆与检索6.
- AI Agent 2025 大爆发:从 GPT-4o 到 Devin,下一代 Agent 架构与落地趋势深度解析
当大模型学会“看”“听”“点鼠标”,并且还能叫来一整个“Agent舰队”协同工作,软件开发、运营乃至个人生产力的游戏规则正在被重写。1|为什么Agent在2025重新引爆?模型升级带来实时多模态OpenAIGPT-4o把文本、语音、图像三路感知和毫秒级响应塞进同一模型,实时demo像“科幻电影走出屏幕”OpenAI。浏览器级自动操作新上线的OperatorAgent能在Web页面自主点击、滚动、填
- 多模态模型在RagFlow中的应用
程序猿李巡天
milvuslangchain人工智能大数据java
在RagFlow的最新版本中(0.19.0)中,为了提升对文档中各类图片的解析效果,也尝试引入了多模态模型(image2text)对图片内容进行增强解析。我们来详细分析一下相关的过程。首先需要在当前租户下配置一个image2text的模型(这里有个坑,后面会讲到),在RagFlow的文档解析过程中主要有三个场景使用到这个image2text模型,我们一一来看下:PDF文档内容提取如果配置了imag
- 多模态模型在RagFlow中的创新应用与实战案例
AGI大模型老王
人工智能DeepSeek产品经理学习AI大模型大模型教学
在RagFlow的最新版本中(0.19.0)中,为了提升对文档中各类图片的解析效果,也尝试引入了多模态模型(image2text)对图片内容进行增强解析。我们来详细分析一下相关的过程。首先需要在当前租户下配置一个image2text的模型(这里有个坑,后面会讲到),在RagFlow的文档解析过程中主要有三个场景使用到这个image2text模型,我们一一来看下:PDF文档内容提取如果配置了imag
- 占道识别漏检率 30%?陌讯多模态算法实测优化
2501_92487926
算法ai计算机视觉视觉检测
开篇:占道经营识别的三大技术痛点在城市管理智能化进程中,占道经营自动识别系统常面临三大核心难题:一是早晚光线剧变导致传统模型mAP骤降15-20%;二是流动摊贩与行人的特征混淆,误判率高达28%;三是密集场景下检测速度跌破15FPS,无法满足实时性要求[1]。某一线城市试点数据显示,基于开源YOLOv5的识别系统日均漏检事件超300起,人工复核成本占总投入的42%。这些问题的根源在于传统算法采用单
- SpringBoot3+LangChain4j:构建企业级 AI 办公助手
EyeDropLyq
人工智能AI编程AIGC
【Java开发者进阶】SpringBoot3+LangChain4j实战:打造企业级AI办公助手,领跑技术变革!一、核心技术亮点:前沿栈融合,让Java开发拥抱AI时代1.SpringBoot3与LangChain4j的黄金搭档以SpringBoot3.x为后端框架,深度集成专为Java设计的LangChain4j工具,打破“Python垄断AI开发”的固有认知。你将掌握多模态AI能力与Java系
- AI情绪识别革命:多模态数据库构建全攻略(2024最新版)
AIGC应用创新大全
人工智能数据库网络ai
AI情绪识别革命:多模态数据库构建全攻略(2024最新版)关键词:AI情绪识别、多模态数据库、图像数据、语音数据、文本数据、数据库构建、2024技术摘要:本文全面且详细地介绍2024年AI情绪识别领域中多模态数据库构建的相关知识。从背景引入,讲解多模态数据的核心概念及其关系,阐述核心算法原理与操作步骤,通过项目实战展示实际代码实现,介绍应用场景、工具资源,探讨未来趋势与挑战,并进行总结,同时给出思
- AI让我焦虑,可有解药?
大虫小呓
人工智能AIGC
被AI相关的信息搞焦虑了?这波以生成式人工智能为核心的生产力变革浪潮,从23年开始短短的两年时间里一浪接一浪的奔涌而来,从ChatGPT、AGI,到多模态大模型、Agent、Cursor,到DeepSeek、Manus,到近期的MCP协议、A2A协议等各种新概念、应用或工具的信息接连不断的往我们的脑子冲进来。就像被连续扇耳光,上一个还没反应过来下一个又来了,被扇得脑袋瓜子嗡嗡的!我发现一个普遍的现
- 大模型卷积神经网络(CNN)的架构原理
hao_wujing
cnn架构人工智能
大家读完觉得有帮助记得关注和点赞!!!一、卷积神经网络(CNN)的核心原理与架构CNN是一种专为结构化数据(如图像、文本)设计的深度学习模型,其核心在于层次化特征提取与参数高效共享,使其成为大模型中视觉和多模态任务的基础组件。1.核心结构分层解析输入层接收预处理后的数据(如图像去均值、归一化),为后续卷积操作提供标准化输入39。卷积层(核心)局部感知:每个卷积核(如3×3)仅处理输入数据的局部区域
- 智能防御原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!智能防御系统通过**AI驱动的动态感知、主动决策与自治响应**构建自适应防护体系,其核心在于将被动规则匹配升级为**预测性威胁狩猎**,实现对新型攻击(如AI生成的0day漏洞利用)的有效遏制。以下从原理、架构到技术实现进行体系化拆解:---###⚙️核心防御原理####1.**多模态威胁感知**-**跨域数据融合**:-网络层:DPI深度包检测(如Zeek解析T
- 时尚搭配助手,深度解析用Keras构建智能穿搭推荐系统
忆愿
高质量领域文章keras人工智能深度学习机器学习python
文章目录引言:当算法遇见时尚第一章数据工程:时尚系统的基石1.1数据获取的多元化途径1.2数据预处理全流程1.2.1图像标准化与增强1.2.2多模态数据处理第二章模型架构设计:从分类到推荐2.1基础CNN模型(图像分类)2.2多任务学习模型(属性联合预测)第三章推荐算法核心3.1协同过滤与内容推荐的融合第四章系统优化4.1注意力机制应用第五章实战演练5.2实时推荐API实现第六章前沿探索:时尚AI
- R语言舆情监控与可视化统计
q56731523
r语言开发语言爬虫
用R语言进行舆情监控并且做到可视化,对我来说,总体难度还算可以,主要是舆情监控通常涉及文本数据的收集(如社交媒体、新闻评论),然后进行情感分析,最后通过图表展示结果。步骤看似简单实则一点也不简单。以下就是我使用R语言进行舆情监控和可视化统计的完整示例。该方案包括文本情感分析和时间趋势可视化:#加载必要的包library(tidyverse)#数据处理和可视化library(tidytext)#文本
- ISBI 2023部分半监督学习论文汇总
xiongxyowo
划水
ISBI2023论文集:https://ieeexplore.ieee.org/xpl/conhome/10230311/proceeding[link]LeveragingInter-AnnotatorDisagreementforSemi-SupervisedSegmentation生物医学图像的信噪比通常较低,这往往导致专家们对GT分割存在分歧。现有的多重标注方法试图解决相互冲突的标注,而我
- AIGC与自动驾驶:文心一言的车载交互设计
AI天才研究院
ChatGPT实战计算AgenticAI实战AIGC自动驾驶文心一言ai
AIGC与自动驾驶:文心一言的车载交互设计关键词:AIGC、自动驾驶、车载交互、文心一言、自然语言处理、多模态交互、用户体验摘要:本文深入探讨人工智能生成内容(AIGC)技术在自动驾驶领域的创新应用,特别是百度文心一言如何重构车载交互体验。通过解析文心一言的核心技术架构、多模态融合算法、场景化交互模型,结合具体代码实现和数学模型,揭示其在语音交互、情境理解、个性化服务等场景中的技术优势。同时通过项
- 【GitHub开源项目实战】LLM-Cookbook 中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践
GitHub开源实战|LLM-Cookbook中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践关键词LLM-Cookbook,中文大模型,Datawhale,大模型实战,LangChain应用,多模态集成,RAG系统,国产模型适配,大模型微调,开源实战解析摘要LLM-Cookbook是由Datawhale社区发起并持续维护的中文大模型应用工程实践项目,旨在系统性总结大模型在中文语境下
- Python 爬虫实战:电商商品评论深度爬取与用户情感分析系统搭建
西攻城狮北
python爬虫开发语言电商
引言在电商领域,商品评论是消费者决策的重要参考,也是商家优化产品和服务的关键依据。通过爬取和分析电商商品评论,可以深入了解用户需求、产品优缺点以及市场趋势。本文将详细介绍如何使用Python构建一个完整的电商商品评论爬取系统,并进行用户情感分析。我们将涵盖从爬虫设计、数据抓取、数据清洗、情感分析到可视化的全流程。1.项目背景与目标电商平台上,商品评论通常包含以下信息:用户名评论内容评论时间评分(星
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- 颠覆人机交互!多模态 AI Agents 大模型如何用 5 大模式开启智能新时代?
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列七颠覆人机交互!多模态AIAgents大模型如何用5大模式开启智能新时代?一、从“单一感知”到“多模态融合”:A
- 如何学习智能体搭建
如何学习智能体搭建前言随着人工智能的发展,智能体(Agent)成为自动化、交互式应用和自主决策系统中的核心角色。本书将从零基础出发,系统讲解智能体的基本原理、常见框架、实战搭建与进阶技巧,帮助你快速上手并应用于实际项目。目录智能体基础认知智能体的核心组成主流智能体开发框架本地智能体与云端智能体选型智能体的任务自动化与插件集成智能体的知识检索与上下文管理智能体的多模态扩展智能体安全与可控性智能体实战
- AAAI—24—Main—paper(关于Multi—Modal的全部文章摘要)
我们生活在一个由多种模态(Multimodal)信息构成的世界,包括视觉信息、听觉信息、文本信息、嗅觉信息等等,当研究的问题或者数据集包含多种这样的模态信息时我们称之为多模态学习多模态机器学习旨在处理学习(视觉,听觉,语言等)不同模态融合交织的信息。下游任务(1)视觉问答1.视觉问答(visualquestionanswering,VQA).给予视觉输入(图像或视频),VQA代表了正确提供一个问题
- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 心理健康语音分析AI模型:开启心理评估新时代
AI大模型应用实战
人工智能语音识别ai
心理健康语音分析AI模型:开启心理评估新时代关键词:心理健康评估、语音信号处理、情感计算、AI模型、多模态融合摘要:传统心理评估依赖量表问卷和人工观察,存在主观性强、效率低、难以实时监测等局限。本文将带您走进“心理健康语音分析AI模型”的世界,从基础概念到核心技术,从算法原理到实战案例,揭秘AI如何通过“听声音”读懂心理状态,开启心理评估的智能化新时代。背景介绍目的和范围心理健康问题已成为全球公共
- 多模态大语言模型arxiv论文略读(151)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文阅读论文笔记
ANovelMLLM-basedApproachforAutonomousDrivinginDifferentWeatherConditions➡️论文标题:ANovelMLLM-basedApproachforAutonomousDrivinginDifferentWeatherConditions➡️论文作者:SondaFourati,WaelJaafar,NouraBaccar➡️研究机构:
- 多模态大语言模型arxiv论文略读(152)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文笔记论文阅读
VidComposition:CanMLLMsAnalyzeCompositionsinCompiledVideos?➡️论文标题:VidComposition:CanMLLMsAnalyzeCompositionsinCompiledVideos?➡️论文作者:YunlongTang,JunjiaGuo,HangHua,SusanLiang,MingqianFeng,XinyangLi,RuiM
- 多模态大模型发展全景:从架构创新到应用突破
陈敬雷-充电了么-CEO兼CTO
python大模型多模态大模型AIGC机器学习深度学习DeepSeek
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】《GPT多模态大模型与AIAgent智能体》新出书籍配套视频【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录GPT多模态大模型系列四多模态大模型发展全景:从架构创新到应用突破更多技术内容总结GPT多模态大模型系列四多模态大模型
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- 多模态AI声纹特征处理与多模态生物识别系统
一、声纹特征处理在多模态AI系统中,声纹特征的处理是实现高精度生物识别的关键步骤之一。以下是声纹特征处理的主要流程:数据预处理语音增强:对采集到的语音信号进行降噪处理,以提高信号质量。语谱图生成:将增强后的语音信号转换为语谱图,语谱图是一种时间-频率表示,能够直观地展示语音信号的频谱变化。图像转换:将彩色语谱图转换为灰度图,进一步进行二值化处理,以便提取纹理特征。特征提取MFCC特征:梅尔频率倒谱
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu