数位dp

原文地址:
https://blog.csdn.net/brazy/article/details/77427699

觉得写得很不错~~

=我是可爱的分割线啦=

数位dp是一种计数用的dp,一般就是要统计一个区间[le,ri]内满足一些条件数的个数。所谓数位dp,字面意思就是在数位上进行dp咯。数位还算是比较好听的名字,数位的含义:一个数有个位、十位、百位、千位…数的每一位就是数位啦!

之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使得新的枚举方式满足dp的性质,然后记忆化就可以了。

两种不同的枚举:对于一个求区间[le,ri]满足条件数的个数,最简单的暴力如下:

for(int i=le;i<=ri;i++)  
        if(right(i)) ans++;  

然而这样枚举不方便记忆化,或者说根本无状态可言。
新的枚举:控制上界枚举,从最高位开始往下枚举,例如:ri=213,那么我们从百位开始枚举:百位可能的情况有0,1,2(觉得这里枚举0有问题的继续看)

然后每一位枚举都不能让枚举的这个数超过上界213(下界就是0或者1,这个次要),当百位枚举了1,那么十位枚举就是从0到9,因为百位1已经比上界2小了,后面数位枚举什么都不可能超过上界。所以问题就在于:当高位枚举刚好达到上界是,那么紧接着的一位枚举就有上界限制了。具体的这里如果百位枚举了2,那么十位的枚举情况就是0到1,如果前两位枚举了21,最后一位之是0到3(这一点正好对于代码模板里的一个变量limit 专门用来判断枚举范围)。最后一个问题:最高位枚举0:百位枚举0,相当于此时我枚举的这个数最多是两位数,如果十位继续枚举0,那么我枚举的就是以为数咯,因为我们要枚举的是小于等于ri的所以数,当然不能少了位数比ri小的咯!(这样枚举是为了无遗漏的枚举,不过可能会带来一个问题,就是前导零的问题,模板里用lead变量表示,不过这个不是每个题目都是会有影响的,可能前导零不会影响我们计数,具体要看题目)

由于这种新的枚举只控制了上界所以我们的Main函数总是这样:

int main()  
{  
    long long le,ri;  
    while(~scanf("%lld%lld",&le,&ri))  
        printf("%lld\n",solve(ri)-solve(le-1));  
}  

w_w 是吧!统计[1,ri]数量和[1,le-1],然后相减就是区间[le,ri]的数量了,这里我写的下界是1,其实0也行,反正相减后就没了,注意题目中le的范围都是大于等于1的(不然le=0,再减一就G_G了)
在讲例题之前先讲个基本的动态模板(先看后面的例题也行):dp思想,枚举到当前位置pos,状态为state(这个就是根据题目来的,可能很多,毕竟dp千变万化)的数量(既然是计数,dp值显然是保存满足条件数的个数)

typedef long long ll;  
int a[20];  
ll dp[20][state];//不同题目状态不同  
ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零  
{  
    //递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了  
    if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */  
    //第二个就是记忆化(在此前可能不同题目还能有一些剪枝)  
    if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];  
    /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/  
    int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了  
    ll ans=0;  
    //开始计数  
    for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了  
    {  
        if() ...  
        else if()...  
        ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的  
        /*这里还算比较灵活,不过做几个题就觉得这里也是套路了 
        大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论 
        去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目 
        要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类, 
        前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/  
    }  
    //计算完,记录状态  
    if(!limit && !lead) dp[pos][state]=ans;  
    /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/  
    return ans;  
}  
ll solve(ll x)  
{  
    int pos=0;  
    while(x)//把数位都分解出来  
    {  
        a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行  
        x/=10;  
    }  
    return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛  
}  
int main()  
{  
    ll le,ri;  
    while(~scanf("%lld%lld",&le,&ri))  
    {  
        //初始化dp数组为-1,这里还有更加优美的优化,后面讲  
        printf("%lld\n",solve(ri)-solve(le-1));  
    }  
}  

你可能感兴趣的:(算法,数位dp)