目录
一:用途
二:实现 O(1)
三:例题
例题1:集合
例题2:连通图无向
例题3:acwing 240 食物链
每个集合用一棵树表示,树根的编号就是整个集合的编号。每个节点存储它的父节点,p[x]表示x的父节点。
(1)朴素并查集:
int p[N]; //存储每个点的祖宗节点
// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ ) p[i] = i;
// 合并a和b所在的两个集合:
p[find(a)] = find(b);
(2)维护size的并查集: //需要求集合点的数量
int p[N], size[N];
//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量
// 返回x的祖宗节点
int find(int x)
// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
p[i] = i; size[i] = 1;
}
// 合并a和b所在的两个集合:
size[find(b)] += size[find(a)];
p[find(a)] = find(b);
(3)维护到祖宗节点距离的并查集:
int p[N], d[N];
//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离
// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x)
{
int u = find(p[x]);
d[x] += d[p[x]];
p[x] = u;
}
return p[x];
}
// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
p[i] = i;
d[i] = 0;
}
// 合并a和b所在的两个集合:
p[find(a)] = find(b);
d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量
一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m 个操作,操作共有两种:
M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。
输出格式
对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No。
每个结果占一行。
数据范围
1≤n,m≤1e5
输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes
#include
using namespace std;
const int N = 100010;
int n, m;
int p[N]; //存储父节点
int find(int x) // 返回x的祖宗节点
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) p[i] = i; //初始化
while(m--)
{
char op[2];
int a, b;
cin >> op >> a >> b;
if(*op == 'M') p[find(a)] = find(b); //合并a和b
else
{
if(find(a) == find(b)) cout << "Yes" << endl;
else cout << "No" << endl;
}
}
return 0;
}
给定一个包含 n 个点(编号为 1∼n1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b,在点 a 和点 b 之间连一条边,aa 和 b 可能相等;
Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b可能相等;
Q2 a,询问点 a所在连通块中点的数量;
输入格式
第一行输入整数 n 和 m。
接下来 m行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。
输出格式
对于每个询问指令 Q1 a b,如果 aa 和 bb 在同一个连通块中,则输出 Yes,否则输出 No。
对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤1051≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
#include
using namespace std;
const int N=1e5+10;
int n,m,p[N],sizee[N];
//p[]存储每个点 sizee[]存储根节点所拥有的子节点数
//并查集中的find函数
int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
p[i]=i;
sizee[i]=1;//每个节点作为根节点 集合中只有自己一个元素
}
while(m--)
{
char op[3];
int a,b;
scanf("%s",op);
if(op[0]=='C')//连边,就是合并
{
scanf("%d%d",&a,&b);
if(find(a)==find(b)) continue;//在一个集合里 就跳出
sizee[find(b)]+=sizee[find(a)];
//将节点数加到新根节点数上
//例如原来a连通块里有3个节点 b里面有4个节点
//a连到b的连通块里 那么b里面现在有7个节点
p[find(a)]=find(b);
//根节点等于b的根节点
}
else if(op[1]=='1')
{
scanf("%d%d",&a,&b);
if(find(a)==find(b)) puts("Yes");//在同一个集合
else puts("No");
}
else
{
scanf("%d",&a);
printf("%d\n",sizee[find(a)]);//输出根节点的数
}
}
return 0;
}