ReadWriteLock之公平锁解析(一)

接下来探讨ReadWriteLock的公平锁实现, 也是分如下场景分析

情景1 三个线程都是读

public static void main(String[] args){
    final Printer printer = new Printer();
    Thread thread1 = new Thread(){
        @Override
        public void run() {
            try {
                printer.read("test1");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    };
    Thread thread2 = new Thread(){
        @Override
        public void run() {
            try {
                printer.read("test2");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    };
    Thread thread3 = new Thread(){
        @Override
        public void run() {
            try {
                printer.read("test3");
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    };
    thread1.start();
    thread2.start();
    thread3.start();
}
ReadWriteLock lock = new ReentrantReadWriteLock(true);

public void read(String str) throws Exception{
    lock.readLock().lock();
    try {
        System.out.println(str);
        Thread.sleep(200);
    }finally {
        lock.readLock().unlock();
    }
}
public void lock() {
    sync.acquireShared(1);
}
// AQS
public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}
// sync
protected final int tryAcquireShared(int unused) {
    // Thread-0
    Thread current = Thread.currentThread();
    // c = 0
    int c = getState();
    // 不走此分支
    if (exclusiveCount(c) != 0 &&
        getExclusiveOwnerThread() != current)
        return -1;
    // r = 0
    int r = sharedCount(c);
    // 
    if (!readerShouldBlock() &&
        r < MAX_COUNT &&
        compareAndSetState(c, c + SHARED_UNIT)) {
        ......
    }
    ......
}
static final class FairSync extends Sync {
    final boolean readerShouldBlock() {
        return hasQueuedPredecessors();
    }
}
// 这段代码目的就是看queue里是否还存在想要获取锁的线程
// 此段代码解析在《ReentrantLock之公平锁unlock》这片文章中可看到
public final boolean hasQueuedPredecessors() {
    Node t = tail;
    Node h = head;
    Node s;
    // 此时h和t都是null, h == t, 所以返回false
    return h != t &&
        ((s = h.next) == null || s.thread != Thread.currentThread());
}

接下来回到tryAcquireShared方法中

protected final int tryAcquireShared(int unused) {
    ......
    // readerShouldBlock方法返回false, 
    if (!readerShouldBlock() &&
        // r = 0, 确实比MAX_COUNT小
        r < MAX_COUNT &&
        // 成功设置state为65536
        compareAndSetState(c, c + SHARED_UNIT)) {
        // 因为r=0, 进入此分支
        if (r == 0) {
            // firstReader为thread-0
            firstReader = current;
            firstReaderHoldCount = 1;
        } else if (firstReader == current) {
            ......
        } else {
            ......
        }
        // 从此返回 
        return 1;
    }
    ......
}

此时线程1已经获取读锁, 接下来线程2开始执行

public void lock() {
    sync.acquireShared(1);
}
public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}
protected final int tryAcquireShared(int unused) {
    // thread-1
    Thread current = Thread.currentThread();
    // state = 65536
    int c = getState();
    // 没加写锁, 跳过此分支
    if (exclusiveCount(c) != 0 &&
        getExclusiveOwnerThread() != current)
        return -1;
    // r = 1, 表示此时已经获得一次读锁
    int r = sharedCount(c);
    // readerShouldBlock方法仍旧返回false
    if (!readerShouldBlock() &&
        // MAX_COUNT为65535, 也就是获取读锁的最大次数就是65535
        // 此时为1, 并没有大于MAX_COUNT
        r < MAX_COUNT &&
        // 已经设置state为65536*2
        compareAndSetState(c, c + SHARED_UNIT)) {
        // 不走此分支
        if (r == 0) {
             ......
        } 
        // 由于非重入锁也不走此分支
        else if (firstReader == current) {
            firstReaderHoldCount++;
        } 
        // 最终走此分支
        else {
            // rh为null
            HoldCounter rh = cachedHoldCounter;
            // 走此分支
            if (rh == null || rh.tid != getThreadId(current))
                // 新建HoldCounter对象
                cachedHoldCounter = rh = readHolds.get();
            else if (rh.count == 0)
               ......
            // 并将HoldCounter对象count(对应重入次数)+1
            rh.count++;
        }
        return 1;
    }
    ......
}

到此第二个线程也获得读锁成功

接下来第三个线程开始执行

// ReadLock
public void lock() {
    sync.acquireShared(1);
}
public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)
        doAcquireShared(arg);
}
protected final int tryAcquireShared(int unused) {
    // thread-2
    Thread current = Thread.currentThread();
    // 131072 ==> 65536 * 2
    int c = getState();
    // 没有读锁, 此分支不走
    if (exclusiveCount(c) != 0 &&
        getExclusiveOwnerThread() != current)
        return -1;
    // r = 2
    int r = sharedCount(c);
    // 都是读操作, 没有阻塞
    if (!readerShouldBlock() &&
        // 读次数小于65535
        r < MAX_COUNT &&
        // state = 65536 * 3 ==> 196608
        compareAndSetState(c, c + SHARED_UNIT)) {
        if (r == 0) {
            ......
        } else if (firstReader == current) {
            ......
        }
        // 走此分支 
        else {
            // cachedHoldCounter表示上一个成功获取读锁的线程
            // 在此就是线程thread-1
            HoldCounter rh = cachedHoldCounter;
            // 由于rh.tid保存的是thread-1的线程id
            // 与当前线程保存的线程id不相等
            // 所以最终还是走此分支
            if (rh == null || rh.tid != getThreadId(current))
                // 创建一个HoldCounter对象
                cachedHoldCounter = rh = readHolds.get();
            else if (rh.count == 0)
                readHolds.set(rh);
            // 将其获得锁次数加一
            rh.count++;
        }
        // 返回
        return 1;
    }
    ...
}

这时线程3也获取到读锁

情景2 前两个线程是读, 最后一个线程是写

由于线程1和线程2的执行流程与情景1相同, 所以不再做分析, 接下来就做线程3的分析

public void lock() {
    sync.acquire(1);
}
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
    // thread-2
    Thread current = Thread.currentThread();
    // c = 65536 * 2
    int c = getState();
    // w = 0
    int w = exclusiveCount(c);
    // 进入此分支
    if (c != 0) {
        // 由于w为0, 进入此分支
        if (w == 0 || current != getExclusiveOwnerThread())
            return false;
        ......
    }
    ......
}

由于之前已经有读操作获取锁, 所以写操作会被阻塞住, 接下来是执行写操作的线程如何被阻塞

回到acquire方法

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        // 这块代码就没什么特别的
        // ReentrantLock阻塞线程也用的这个
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

你可能感兴趣的:(ReadWriteLock之公平锁解析(一))