cs231n作业:Assignment1-KNN

加载数据集

# Load the raw CIFAR-10 data.
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)

结果:
Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)

选择训练数据5000张,测试数据500张

# Subsample the data for more efficient code execution in this exercise
num_training = 5000
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]
num_test = 500
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]

并将32323的照片展开成3072。

实现 compute_distances_two_loops

  def compute_distances_two_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the
    test data.
 
    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.
 
    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      for j in range(num_train):
        
        #####################################################################
        # TODO:                                                             #
        # Compute the l2 distance between the ith test point and the jth    #
        # training point, and store the result in dists[i, j]. You should   #
        # not use a loop over dimension.                                    #
        #####################################################################
        dists[i][j] = np.sqrt(np.sum(np.square(self.X_train[j,:] - X[i,:])))
        #####################################################################
        #                       END OF YOUR CODE                            #
        #####################################################################
    return dists

将dists画成图:


visualize dists

Inline Question #1:

  • What in the data is the cause behind the distinctly bright rows?
  • Answer: It means no train case is close to this test case, which indicates that it may be a noise.
  • What causes the columns?
  • Answer: No test case is close to this train case, which indicates that it may be a outlier.

实现 compute_distances_one_loop

  def compute_distances_one_loop(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.
 
    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in range(num_test):
      #######################################################################
      # TODO:                                                               #
      # Compute the l2 distance between the ith test point and all training #
      # points, and store the result in dists[i, :].                        #
      #######################################################################
      dists[i,:] = np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis = 1)) 
      # axis = 1 按行计算
      #######################################################################
      #                         END OF YOUR CODE                            #
      #######################################################################
    return dists

实现classifier.compute_distances_no_loops

  def compute_distances_no_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using no explicit loops.
 
    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    #########################################################################
    # TODO:                                                                 #
    # Compute the l2 distance between all test points and all training      #
    # points without using any explicit loops, and store the result in      #
    # dists.                                                                #
    #                                                                       #
    # You should implement this function using only basic array operations; #
    # in particular you should not use functions from scipy.                #
    #                                                                       #
    # HINT: Try to formulate the l2 distance using matrix multiplication    #
    #       and two broadcast sums.                                         #
    #########################################################################
    dists = np.multiply(np.dot(X,self.X_train.T),-2) 
    sq1 = np.sum(np.square(X),axis=1,keepdims = True) 
    sq2 = np.sum(np.square(self.X_train),axis=1) 
    dists = np.add(dists,sq1)                               # python广播机制
    dists = np.add(dists,sq2) 
    dists = np.sqrt(dists)
    #########################################################################
    #                         END OF YOUR CODE                              #
    #########################################################################
    return dists

Cross-validation

num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)


################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}


################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
classifier = KNearestNeighbor()
for k in k_choices:
    accuracies = []
    for fold in range(num_folds):
        temp_X = X_train_folds[:]                           # 先取整个的集
        temp_y = y_train_folds[:] 
        X_val_fold = temp_X.pop(fold)                       # 拿出一个当作val集
        y_val_fold = temp_y.pop(fold)
        temp_X = np.array([y for x in temp_X for y in x])   # 把训练集展开
        temp_y = np.array([y for x in temp_y for y in x])
        classifier.train(temp_X,temp_y)
        y_val_pred = classifier.predict(X_val_fold,k=k)
        num_correct = np.sum(y_val_fold == y_val_pred)
        accuracies.append(num_correct / y_val_fold.shape[0])
    k_to_accuracies[k] = accuracies
    
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))

画图:


最后

cs231n的作业很有含金量,好好做会有很大提高。加油吖 =)

你可能感兴趣的:(cs231n作业:Assignment1-KNN)