- 9. 卷积神经网络工程实践
路小漫
小姐姐归来,带着蜜汁微笑,啦啦啦~这次讲的应该是一些成功的神经网络架构,毕竟我们不能总重复造轮子,借鉴很重要AlexNet结构AlexNet的架构如图,有5个卷积层问题1输入是:227×227×3的图像第一层(卷积层1):96个大小为11×11的滤波器,步长为4问题:卷积层的输出是?*答案:55×55×96问题2问题:这一层的超参数的个数是多少?答案:(11×11×3)×96=35k问题3输入:2
- 深度学习,人工智能总结
qq_14827935
人工智能深度学习
1,入门建议少看书,多看csdn上帖子总结(主要就是BP神经网络,CNN,rnn),建立宏观的概念和主要框架,书可以作为进阶补充作为工具书查阅。2,目前的神经网络还处于前牛顿时代,就是实践中图像识别效果很好,但是原理不太清楚3,现在的人工智能有点像通信行业2g时代,从2012年alexnet到openai的chatgpt,未来还有很长的发展潜力。丰田不是汽车的发明者,但现在销量最高。oepnai在
- 【深度学习】使用tensorflow实现VGG19网络
杨得江-君临天下wyj
网络协议网络
【深度学习】使用tensorflow实现VGG19网络本文章向大家介绍【深度学习】使用tensorflow实现VGG19网络,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。VGG网络与AlexNet类似,也是一种CNN,VGG在2014年的ILSVRClocalizationandclassification两个问题上分别取得了第一名和
- AlexNet的出现推动深度学习的巨大发展
科学禅道
深度学习模型专栏深度学习人工智能
尽管AlexNet(2012)的代码只比LeNet(1998)多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。AlexNet(由AlexKrizhevsky、IlyaSutskever和GeoffreyHinton共同设计)在架构上相对于早先的LeNet-5等浅层神经网络并没有显著增加代码行数,但其在深度学习领域的重要突破在于其对深层卷积神经网络的实际应用和验证。Ale
- ChatGPT魔法1: 背后的原理
王丰博
GPTchatgpt
1.AI的三个阶段1)上世纪50~60年代,计算机刚刚产生2)Machinelearning3)Deeplearning,有神经网络,最有代表性的是ChatGPT,GPT(GenerativePre-TrainedTransformer)2.深度神经网络llyaSutskever:做图像识别,使用了GPT去并行计算及训练。Alexnet数据库已经label好的(李飞飞)GPU算力3.GPT3.1T
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- 深度学习-分类任务---经典网络
丁引
网络深度学习
文章目录经典网络1LeNet51.1模型结构1.2模型结构1.3模型特性2AlexNet2.1模型介绍2.2模型结构2.3模型解读2.4模型特性3可视化ZFNet-转置卷积3.1基本的思想及其过程3.2卷积与转置卷积3.3卷积可视化3.4ZFNet和AlexNet比较4VGGNet4.1模型结构4.2模型特点5NetworkinNetwork5.1模型结构5.2模型创新点6GoogleNet6.1
- 【机器学习】卷积和反向传播
无水先生
机器学习人工智能人工智能神经网络
一、说明自从AlexNet在2012年赢得ImageNet竞赛以来,卷积神经网络(CNN)就变得无处不在。从不起眼的LeNet到ResNets再到DenseNets,CNN无处不在。您是否想知道CNN的反向传播中会发生什么,特别是反向传播在CNN中的工作原理。如果您读过反向传播,您就会了解它是如何在具有全连接层的简单神经网络中实现的。(AndrewNg在Coursera上的课程对此做了很好的解释)
- 深度学习的新进展:从图像识别到自然语言处理
一休哥助手
话题深度学习自然语言处理人工智能
导语:深度学习作为人工智能领域的重要分支,近年来取得了巨大的突破和进展。从最初的图像识别到如今的自然语言处理,深度学习正逐渐渗透到我们日常生活的方方面面。本文将带您一探深度学习的新进展,了解其在图像识别和自然语言处理领域的应用。一、图像识别:从精确度到实时性的提升深度学习在图像识别领域的应用已经取得了令人瞩目的成果。从最早的AlexNet到如今的ResNet、Inception等模型,深度学习模型
- 卷积神经网络(CNN)
栉风沐雪
深度学习cnn人工智能神经网络
本文仅在理论方面讲述CNN相关的知识,并给出AlexNet,Agg,ResNet等网络结构的代码。1.构成由输入层、卷积层、池化层、全连接层构成。输入层:输入数据卷积层:提取图像特征池化层:压缩特征全连接层:为输出准备,形同一维神经网络,下文不另起文笔描述2.神经网络与CNN对比左边为神经网络,右边为卷积神经网络。均采用的时较为简单的结构,卷积神经网络是对基础神经网络的延申,由一维扩展到三位空间,
- 深度学习的进展
李建军
软件使用深度学习人工智能
深度学习近年来的进展在各个领域均展现出非凡的实力,以下将进一步详述几个关键领域的具体突破和应用:1.计算机视觉图像分类与识别:随着深度卷积神经网络的发展,如AlexNet、VGG、Inception系列、ResNet以及DenseNet等模型,图像分类准确率显著提高。尤其是ImageNet大规模视觉识别挑战赛上,错误率逐年降低,现在已经接近人类水平。目标检测:RCNN系列(FastRCNN、Fas
- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- caffe中的参考模型
雨住多一横
RCNNmode_reference_rcnn_ilsvrc13l.pngcaffenet用于Flickrstyle数据集model_finetune_flickr_style.pngAlexNetmodel_alexnet.pnggooglenetmodel_googlenet.pngcaffenetmodel_reference_caffenet.png
- 人工智能:破局与创新的较量,谁将主宰未来?
猫之角
一、AI发展趋势1.1数据驱动的增长AI的快速发展离不开大量数据的支撑。随着5G、物联网等技术的普及,数据的采集、传输和处理能力得到了极大提升。这使得数据驱动的AI技术取得了突破性进展,尤其是在计算机视觉、自然语言处理等领域。1.2深度学习与神经网络的创新深度学习作为AI的核心技术之一,其基于神经网络的算法在近年来得到了快速发展。从LeNet、AlexNet到ResNet,再到GPT、BERT等模
- Deeplearning with pytorch p1ch2
风与海的半神
深度学习
Deeplearningwithpytorchp1ch2AlexNet&ResNetResNet&resnet101AlexNet&ResNetResNet&resnet101ResNet:residualnetworksresnet101多层神经网络结构,今天的主要收获如下更改jupyter默认文件路径;torchvision中的models,transforms模块;PIL的Image模块;t
- 语义分割:从早期探索到深度学习的突破
kadog
ByGPT深度学习人工智能笔记python
语义分割:从早期探索到深度学习的突破语义分割的端倪:从早期探索到深度学习的突破引言早期技术:图像处理与模式识别边缘检测区域生长图割(GraphCut)聚类方法深度学习的兴起:CNN革命2012年AlexNet的突破全卷积网络(FCN)U-Net的创新设计深度学习卷积网络技术不断创新发展里程碑:端到端学习端到端全卷积网络(FCN)MaskR-CNN的多任务学习Transformer在视觉任务中的应用
- 面向ChatGPT学AI?
fVector
ChatGPT初体验本文整理了一些询问ChatGPT的有关深度学习的问题和答案本文首发于2022年12月6日,微信公众号[胡说深度学习]。1.一些深度学习的问题2.问题和答案3.使用ChatGPT后的感觉1.一些深度学习的问题使用python和pytorch写Alexnet神经网络神经网络中使用激活函数的作用是什么?深度学习中常用的生成模型有哪些?深度学习中正则化的作用是什么?现在图像生成领域可以
- RMNet: Equivalently Removing Residual Connection from Networks
qgh1223
人工智能计算机视觉深度学习剪枝
RMNet:EquivalentlyRemovingResidualConnectionfromNetworks论文链接:https://arxiv.org/pdf/2111.00687.pdf源码链接:https://hub.nuaa.cf//fxmeng/RMNet简介自从AlexNet问世以来,SOTA的CNN架构变得越来越深。例如,AlexNet只有5个卷积层,很快被VGG和GoogleN
- Sparse Iso-FLOP Transformations for Maximizing Training Efficiency
qgh1223
模型压缩深度学习计算机视觉人工智能剪枝
SparseIso-FLOPTransformationsforMaximizingTrainingEfficiency论文链接:https://arxiv.org/pdf/2303.11525.pdf源码链接:https://hub.nuaa.cf/CerebrasResearch/Sparse-IFT简介模型尺寸和训练数据的增加导致了很多深度学习的突破(AlexNet、ResNet、Trans
- 局部响应归一化层(LRN)
LiBiscuit
冒泡~二月啦!一年的十二分之一就过啦鸭接下来该收收心过春节啦!于是来个年前最后一更~局部响应归一化层(LocalResponseNormalization)局部响应归一化层简称LRN,是在深度学习中提高准确度的技术方法。一般是在激活、池化后进行的一中处理方法,因在Alexnet中运用到,故做一下整理。为什么要引入LRN层?首先要引入一个神经生物学的概念:侧抑制(lateralinhibitio),
- 论文(二):AlexNet
瑾怀轩
论文集深度学习
原名:ImageNetClassificationwithDeepConvolutionalNeuralNetworks作者:AlexKrizhevsky,IlyaSutskever,GeoffreyE.Hinton摘要Wetrainedalarge,deepconvolutionalneuralnetworktoclassifythe1.2millionhigh-resolutionimages
- AlexNet,ZFNet详解
圆圆栗子君
深度学习专栏深度学习人工智能cnn神经网络
1AlexNet网络结构对于AlexNet网络来说,因为当时资源环境受限,他从第一步卷积开始就把一个图像分到两个GPU上训练,然后中间进行组合最后进行融合成全连接成1000个置信度1得到一张3x224x224的图像,然后进行11x11的卷积,卷积两次,分别分配到不同的GPU上分别得到,两个48x55x55的featuremap,然后进行最大池化操作从48x55x55变成48x27x272分别进行相
- AlexNet(深度学习模型)详解
GeekyGuru
深度学习计算机视觉神经网络
AlexNet是一种深度卷积神经网络,由AlexKrizhevsky、IlyaSutskever和GeoffreyHinton于2012年在ImageNet图像分类竞赛中首次引入。这项竞赛是一个庞大的数据集,其中包含超过100万张图像和1000个不同的类别。AlexNet是第一个在ImageNet数据集上取得最佳结果的深度学习模型。本文将详细介绍AlexNet的结构和训练过程,并分析它在计算机视觉
- tensorflow学习笔记-图像分类模型-AlexNet实现
飞天小小猫
之前一篇文章中总结了CNN中图像分类的经典模型,包括论文解读和分析,但是不写个代码搞一把总觉得虚~啊哈哈这个系列里准备把这些个经典模型用tensorflow实现一下。参考之前引用的blog:深度学习AlexNet模型详细分析上代码吧。参照着模型看更好读一些。'''图像分类模型的tensorflow实现之--AlexNetTensorflowVersion:1.4PythonVersion:3.6R
- 经典分类CNN模型系列其一:Alexnet
manofmountain
介绍传统的机器学习分类模型像SVM,逻辑回归,决策树,甚至贝叶斯网络等在CNN推动的深度学习近几年大肆发展之后,都已纷纷被秒成了渣。这一切都始于2012年。Alexnet的横空出世及其在ILSVRC2012Imagenet数据集分类大赛中表现出的摧枯拉朽的领先正式宣告了深度学习纪元的开启。其实CNN模型并非啥新玩意,早在1997年Yang,Lecun就有实现过一个CNN模型并将之用于类似于MNST
- 查看神经网络中间层特征矩阵及卷积核参数
mango1698
神经网络矩阵人工智能
可视化featuremaps以及kernelweights,使用alexnet模型进行演示。1.查看中间层特征矩阵alexnet模型,修改了向前传播importtorchfromtorchimportnnfromtorch.nnimportfunctionalasF#对花图像数据进行分类classAlexNet(nn.Module):def__init__(self,num_classes=100
- [论文复现]Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing
JUNLONG2
论文翻译连接https://www.jianshu.com/p/b1be6a8a0bf7文章中提到的轮子有:1.在开源BranchyNet和Chainer下,实现了分支模型。2.使用经典AlexNet模型对cifar-10数据集执行图像识别任务。3.设置静态带宽环境,我们使用WonderShaper工具控制可用带宽。4.对于动态带宽环境设置,我们使用比利时4G/LTE带宽记录的数据集来模拟动态带宽
- 快速入门Torch构建自己的网络模型
半度、
机器学习网络
真有用构建自己的网络模型读前必看刚学完Alex网络感觉很厉害的样子,我也要搭建一个可以看着网络结构实现上面的代码你已经很强了,千万不要再想实现VGG等网络!!!90%你能了解到的模型大佬早已实现好,直接调用就OK下面是源码用nn.Module实现的AlexNet,和我们实现的区别并不大,将模型print出来能看懂就可以不忘初心,构建自己的网络模型,将AlexNet输入改为单通道图片:Tips读前必
- 李沐之使用块的网络VGG
sendmeasong_ying
深度学习pytorch人工智能python
目录1.VGG2.代码实现1.VGGn层是指可以有N个窗口3*3,填充为1的卷积层。有m个通道,这里输入和输出都是一样的。VGG就是替换掉AlexNet整个卷积层的架构。直径大小表示占内存,横坐标表示速度,纵坐标表示精确度。2.代码实现importtorchfromtorchimportnnfrond2limporttorchasd2l"""VGG块"""#该函数有三个参数,分别对应于卷积层的数量
- 机器学习 | 卷积神经网络
rookiexiong
机器学习机器学习cnn人工智能
机器学习|卷积神经网络实验目的采用任意一种课程中介绍过的或者其它卷积神经网络模型(例如LeNet-5、AlexNet等)用于解决某种媒体类型的模式识别问题。实验内容卷积神经网络可以基于现有框架如TensorFlow、Pytorch或者Mindspore等构建,也可以自行设计实现。数据集可以使用手写体数字图像标准数据集,也可以自行构建。预测问题可以包括分类或者回归等。实验工作还需要对激活函数的选择、
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement