BP算法实现

我们定义一个简单的2层神经网络

BP算法实现_第1张图片

linear1 = LinearLayer(2,3)
relu1 = Relu()
linear2 = LinearLayer(3,1)

 BP算法实现_第2张图片

还需要定义一个损失函数Loss,用来衡量我们的输出结果与实际结果的误差。这里用的是均方误差MSE,表达式如下

BP算法实现_第3张图片 

计算图模型把一个复合运算拆分成为多个子运算,因此,我们需要引入很多中间变量。

定义:BP算法实现_第4张图片

BP算法实现_第5张图片 

根据这些公式,我们就可以用计算图模型来表示我们的神经网络,如下:

BP算法实现_第6张图片 

这个计算图就是上面那一堆公式的可视化表示。

在图里面,公式里每个出现过的变量都被视为一个节点,变量之间的连线描述了变量之间存在直接的计算的关系。计算图的表示方法,有什么好处呢?

下面我们基于这个计算图来用BP算法进行模型的训练。

对模型进行训练,就是找到一组模型的参数,使得我们的网络模型能够准确预测我们的训练数据。在我们这个例子里面,需要训练参数其实只有线性层的矩阵跟bias项:[公式] 。

训练采用的是BP算法,采用梯度下降法来逐渐迭代去更新参数。

梯度下降法的原理很简单,每次迭代中,用损失函数关于参数的梯度乘以学习率,来更新参数。BP算法实现_第7张图片

关于梯度我要多说几句。梯度表示Y关于x的变化率,可以理解成x的速度。由于W1是一个2X3的矩阵,那么loss关于W1的梯度可以理解W1的每个元素的瞬时速度。W1的梯度的形状,必然是严格跟参数本身的形状是一样的(每个点都有对应的速度)。也就是说损失函数关于W1的梯度也必然是一个2X3的矩阵(不然更新公式里面无法做加减)。

下面开始训练过程,

首先给定输入X,初始化 [公式] (记住不能初始为全0)。

正向传播(forward pass)

BP算法首先在计算图上面进行正向传播(forward pass),即从左到右计算所有未知量:

 BP算法实现_第8张图片

 

严格按照顺序计算,所有的 [公式] 都能先后求出,右边的y就是网络的当前预测结果。

反向传播(backward pass)

既然我们想要用参数的梯度来更新参数,那么我们需要求出最后的节点输出loss关于每个参数的梯度,求梯度的方法是反向传播。

由于我们已经进行过一次正向传播,因此图里面所有的节点的值都变成了已知量。

BP算法实现_第9张图片

 

我们现在要求的是图里面标为红色的这4个梯度,它们距离loss有点儿远。

但是不急,有了这个计算图,我们可以慢慢从右往左推出这4个值。

先从最右边开始,观察到Loss节点只有一条边跟y连着,计算loss关于y的导数(这个求导只有一个变量y,怎么求不用我解释了吧):

BP算法实现_第10张图片

我们就求得了损失函数关于输出y的导数,然后继续往左边计算。

(已经求出的梯度我们用橙色来标记)

 BP算法实现_第11张图片

y是通过O2计算出来的,我们可以计算y关于O2的梯度:BP算法实现_第12张图片但是我们想要的是loss关于O2的梯度,这里应用到了链式求导法则: 

BP算法实现_第13张图片 

loss关于y的梯度在之前已经求出来过了,然后就可以求出loss关于O2的梯度。 

 BP算法实现_第14张图片

继续往左计算梯度:BP算法实现_第15张图片 

上图中 a2 关于它每个变量的梯度,可以直接根据 a2 与它左边3个变量的表达式来算出,如下:

BP算法实现_第16张图片 

这一步我们算出了两个需要计算的梯度,似乎并没有遇到困难,继续往左传播。

在计算 a1梯度的时候,我们遇到了relu激活函数,relu函数的梯度也很好求:

 BP算法实现_第17张图片

它的梯度就是在输入X的基础上,所有大于0的位置导数都是1,其他位置导数都是0,比如:

BP算法实现_第18张图片 

(这括号里的看不懂不要紧,当N维向量对M维向量求导应用链式法则时,通用一点儿的结果是一个NM的jacobian矩阵再乘M1向量,但是这里由于1. N=M。2. jacobian矩阵是一个对角方阵。所以可以简化成两个向量相乘)

再往左继续传,我就不写每个步骤了。

BP算法实现_第19张图片

总之可以一直传到所有梯度都求出来为止。接下来一步就是愉快地进行随机梯度下降法的更新操作了。

三、模块化各种Layer

观察我们的网络,发现里面的几个模块之间其实大部分干的事情都是相似的,无非就是层数不一样。那么我们就可以复用,我们完全可以把它们抽象成不同的Layer:BP算法实现_第20张图片于是,我们可以把这些类似模块看成一个小黑盒子,我们的模型等价于下面这个:BP算法实现_第21张图片于是上面那个复杂的网状结构,被我们简化成了线性结构。

下面我对照代码实现每个小黑盒子吧,实现代码在这个文件里面:Layers.py首先介绍线性全连接层,先看代码吧:

class LinearLayer:
    def __init__(self, input_D, output_D):
        self._W = np.random.normal(0, 0.1, (input_D, output_D)) #初始化不能为全0
        self._b = np.random.normal(0, 0.1, (1, output_D))
        self._grad_W = np.zeros((input_D, output_D))
        self._grad_b = np.zeros((1, output_D))
 
    def forward(self, X):
        return np.matmul(X, self._W) + self._b
 
    def backward(self, X, grad): 
        self._grad_W = np.matmul( X.T, grad)
        self._grad_b = np.matmul(grad.T, np.ones(X.shape[0])) 
        return np.matmul(grad, self._W.T)
 
    def update(self, learn_rate):
        self._W = self._W - self._grad_W * learn_rate
        self._b = self._b - self._grad_b * learn_rate

forward太简单了,就不讲了,看一下backward。

backward里面其实要计算3个值,W, b的梯度算完以后要存起来,前一层的梯度算完以后直接作为返回值传出去,推导的公式如下:BP算法实现_第22张图片注意矩阵求导应用链式法则的时候,顺序非常重要。要严格按照指定顺序来乘,不然形状对不上。具体什么顺序,可以自己想办法慢慢拼凑出来。

还有一个update函数,调用此函数这一层会按照梯度下降法来更新它的W跟b的值,这个实现也很简单直接看代码就明白了。

然后实现Relu层:

class Relu:
    def __init__(self):
        pass
 
    def forward(self, X):
        return np.where(X < 0, 0, X)
 
    def backward(self, X, grad):
        return np.where(X > 0, X, 0) * gr

由于这一层没有需要保存参数,只需要实现以下forward跟backward方法就行了,非常简单。

接下来开始实现神经网络训练。

四、搭建神经网络

训练部分的代码在 nn.py 里面,里面的代码哪里看不懂可以翻回去看之前的解释,命名都是跟上面说的一样的。

#训练数据:经典的异或分类问题
train_X = np.array([[0,0],[0,1],[1,0],[1,1]])
train_y = np.array([0,1,1,0])
 
#初始化网络,总共2层,输入数据是2维,第一层3个节点,第二层1个节点作为输出层,激活函数使用Relu
linear1 = LinearLayer(2,3)
relu1 = Relu()
linear2 = LinearLayer(3,1)
 
#训练网络
for i in range(10000):
 
    #前向传播Forward,获取网络输出
    o0 = train_X
    a1 = linear1.forward(o0)
    o1 = relu1.forward(a1)
    a2 = linear2.forward(o1)
    o2 = a2
 
    #获得网络当前输出,计算损失loss
    y = o2.reshape(o2.shape[0])
    loss = MSELoss(train_y, y) # MSE损失函数
 
 
    #反向传播,获取梯度
    grad = (y - train_y).reshape(result.shape[0],1)
    grad = linear2.backward(o1, grad)
    grad = relu1.backward(a1, grad)
    grad = linear1.backward(o0, grad)
 
 
    learn_rate = 0.01  #学习率
 
    #更新网络中线性层的参数
    linear1.update(learn_rate)
    linear2.update(learn_rate)
 
    #判断学习是否完成
    if i % 200 == 0:
        print(loss)
    if loss < 0.001:
        print("训练完成! 第%d次迭代" %(i))
        break

我觉得没啥好讲的,就直接对着我们的计算图,一步一步来。

注意一下中间过程几个向量的形状。列向量跟行向量是不一样的,一不小心把列向量跟行向量做运算,numpy不会报错,而是会广播成一个矩阵。所以运算的之前,记得该转置得转置。

#将训练好的层打包成一个model
model = [linear1, relu1, linear2]
 
#用训练好的模型去预测
def predict(model, X):
    tmp = X
    for layer in model:
        tmp = layer.forward(tmp)
    return np.where(tmp > 0.5, 1, 0)

把模型打包然后用上面的predict函数来预测。也没啥好说的,就直接往后一直forward就完儿事。

#开始预测
print("-----")
X = np.array([[0,0],[0,1],[1,0],[1,1]])
result = predict(model, X)
print("预测数据1")
print(X)
print("预测结果1")
print(result)
预测训练完的网络就能拿去搞预测了,我这里设置学习率为0.01的情况下,在第3315次迭代时候完成训练。

最后我们成功地预测了训练数据。BP算法实现_第23张图片

 

 

你可能感兴趣的:(机器学习,深度学习,BP,反向传播法)