让我们聚焦于神经网络的局部:如下图所示,假设我们的原始输入为 x x x,而希望学出的理想映射为 f ( x ) f(\mathbf{x}) f(x)(作为下图上方激活函数的输入)。下图左图虚线框中的部分需要直接拟合出该映射 f ( x ) f(\mathbf{x}) f(x),而右图虚线框中的部分则需要拟合出残差映射 f ( x ) − x f(\mathbf{x})-\mathbf{x} f(x)−x。残差映射在现实中往往更容易优化。以本节开头提到等恒等映射作为我们希望学出的理想映射 f ( x ) f(\mathbf{x}) f(x),我们只需要将下图右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么 f ( x ) f(\mathbf{x}) f(x)即为恒等映射。实际中,当理想映射 f ( x ) f(\mathbf{x}) f(x)极接近恒等映射时,残差易于捕捉恒等映射的细微波动。下图右图是ResNet的基础结构-残差快(residual block)。在残差块中,输入可通过跨层数据线路更快地向前传播。
ResNet沿用VGG完整的KaTeX parse error: Undefined control sequence: \time at position 2: 3\̲t̲i̲m̲e̲3卷积层设计。残差块里首先有2个相同输出通道数的KaTeX parse error: Undefined control sequence: \time at position 2: 3\̲t̲i̲m̲e̲3卷积层。每个卷积层后接一个批量归一化层和ReLU激活函数。然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而可以相加。如果想改变通道数,就需要引入一个额外的 1 × 1 1\times1 1×1卷积层来讲输入变换成需要的形状后再做相加运算。残差块的实现如下:
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
class Residual(nn.Module):
def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
如下图所示,此外码生成两种类型的网络:一种是在use_1x1conv=False、应用ReLU非线性函数之前,将输入添加到输出。另一种是在use_1x1conv=True时,添加通过 1 × 1 1\times1 1×1卷积调整通道和分辨率。
下面我们来查看输入和输出形状一致的情况。
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape
torch.Size([4, 3, 6, 6])
我们也可以在增加输出通道数的同时,减半输出的高和宽。
blk = Residual(3, 6, use_1x1conv=True, strides=2)
blk(X).shape
torch.Size([4, 6, 3, 3])
ResNet的前两层为:在输出通道数为64、步幅为2的 7 × 7 7\times7 7×7卷积层后,接步幅为2的 3 × 3 3\times3 3×3的最大汇聚层。不同之处在于ResNet的每个卷积层后增加了批量归一化层。
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
ResNet使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。第一个模块的通道数同输入通道数一致。由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
最后,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(), nn.Linear(512, 10))
每个模块有4个卷积层(不包括恒等映射的 1 × 1 1\times1 1×1卷积层)。加上第一个 7 × 7 7\times7 7×7卷积层和最后一个全连接层,共有18层。因此,这种模型通常被称为ResNet-18。通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的152层的ResNet-152。ResNet的结构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。下图描述了完整的ResNet-18。
在训练ResNet之前,让我们观察一下ResNet中的不同模块的输入形状是如何变化的。在之前的所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 64, 56, 56])
Sequential output shape: torch.Size([1, 64, 56, 56])
Sequential output shape: torch.Size([1, 128, 28, 28])
Sequential output shape: torch.Size([1, 256, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape: torch.Size([1, 512, 1, 1])
Flatten output shape: torch.Size([1, 512])
Linear output shape: torch.Size([1, 10])
同之前一样,我们在Fashion-MNIST数据集上训练ResNet。
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.014, train acc 0.996, test acc 0.895
4680.2 examples/sec on cuda:0