- Android研发去美团面试,被面试官用各种原理蹂躏,所幸最终拿到Offer
2401_87029500
android面试职场和发展
一个线程是否只有一个Looper?如何保证一个线程只有一个Looper?多线程的方式有哪些?生产者消费者模式wait和sleep的区别String、StringBuffer、StringBuilder的区别ANR异常发生条件如何分析ANR自定义View和ViewGroup事件处理分发,拦截,处理。GC算法四大引用强,软,弱,虚,并说明下合适GC动画View动画,属性动画,帧动画。再说下View和属
- 机器学习--学习计划
kyle~
机器学习机器学习学习人工智能
3周机器学习速成计划基于「28原则」,聚焦机器学习20%的核心概念,覆盖80%的常见应用场景。计划分为理论学习+项目实战,每周学习后通过5个递进项目巩固知识。第1周:数据与监督学习基础学习目标:掌握数据预处理、线性模型与分类任务的基础流程。核心概念(20%关键内容):数据预处理缺失值处理(均值填充、删除)特征缩放(标准化、归一化)分类变量编码(独热编码、标签编码)监督学习基础线性回归(原理、损失函
- 机器学习--概览
kyle~
机器学习机器学习人工智能
一、机器学习基础概念1.定义机器学习(MachineLearning,ML):通过算法让计算机从数据中自动学习规律,并利用学习到的模型进行预测或决策,而无需显式编程。2.与编程的区别传统编程机器学习输入:规则+数据→输出:结果输入:数据+结果→输出:规则需要人工编写逻辑自动发现数据中的模式3.核心要素数据:模型学习的原材料(结构化/非结构化)特征(Feature):数据的可量化属性(如房价预测中的
- 机器学习笔记20241017
tt555555555555
学习笔记深度学习机器学习笔记人工智能
文章目录torchvisiondataloadernn.module卷积非线性激活模型选择训练误差泛化误差正则化权重衰退的基本概念数学表示权重衰退的效果物理解释数值稳定性(GradientVanishing)梯度消失原因解决方法梯度爆炸(GradientExplosion)定义原因解决方法总结继续跟着小土堆学pytorchtorchvision#导入torchvision库,主要用于处理图像数据集
- 基于机器学习中集成学习的stacking方式进行的金线莲质量鉴别研究(python进行数据处理并完成建模,对品种进行预测)
Life is a joke
PYTHON人工智能机器学习机器学习集成学习人工智能
1.前言金线莲为兰科开唇兰属植物,别名金丝兰、金丝线、金耳环、乌人参、金钱草等,是一种名贵中药材,国内主要产地为较低纬度地区如:福建、台湾、广东、广西、浙江、江西、海南、云南、四川、贵州以及西藏南部[1],被当地人民誉为“药中之王”,福建品种和台湾品种更是其中的上等品种,在治疗肺部炎症、糖尿病、癌症、肾炎、膀胱炎、重症肌无力、风湿性及类风湿性关节炎、高血脂、毒蛇咬伤有着很大的作用[2-3]。由于野
- 基于BiGRU的预测模型及其Python和MATLAB实现
追蜻蜓追累了
机器学习深度学习cnnlstm神经网络gru回归算法
##一、背景在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。传统的机器学习算法往往无法很好地捕捉数据中的时序信息和上下文关系,因此深度学习中的循环神经网络(RNN)逐渐成为解决这一问题的重要工具。RNN能够处理序列数据,但它们在长序列数据的学习中存在梯度消失和梯度爆炸的问题。为了解决这些问题,长短期记忆网络(LS
- 随机森林(Random Forest)预测模型及其特征分析(Python和MATLAB实现)
追蜻蜓追累了
深度学习机器学习python随机森林大数据回归算法算法
##一、背景在大数据和机器学习的快速发展时代,数据的处理和分析变得尤为重要。随着多个领域积累了海量数据,传统的统计分析方法常常无法满足复杂问题的需求。在这种背景下,机器学习方法开始广泛应用。随机森林(RandomForest)作为一种强大的集成学习方法,因其高效性和较强的泛化能力而备受关注。随机森林最初由LeoBreiman在2001年提出,基于决策树这一基本分类模型。其基本思想是通过构建多个决策
- C语言解决左移问题
七七凉
c++c#
图2.1主方法首先用户先输入一串字符串,表现为:stringstr;cout>str;其次使用贪心算法来优化字符串,使得相邻字符的ASCII码之差的最小值最大因此调用到函数greedyOptimize(str);然后初始化maxMinDiff为INT_MIN(整型最小值),用于记录经过左移操作后能得到的相邻字符ASCII码之差的最大最小值,同时定义bestShiftedStr用于保存能达到这个最大
- 自然语言生成(NLG)算法模型评估方案的硬件配置、系统架构设计、软件技术栈、实现流程和关键代码
weixin_30777913
人工智能算法系统架构自然语言处理
智能化对话中的自然语言生成(NLG)算法模型评估是一个复杂而多维的过程,它涉及多个评估指标和策略,以确保生成的文本质量、准确性和流畅性。智能化对话中的NLG算法模型评估是一个涉及多个评估指标和策略的过程。通过选择合适的评估指标和策略,可以全面、客观地评估模型的性能和表现,为模型的优化和改进提供有力支持。以下是对NLG算法模型评估的详细论述及举例说明:一、评估指标准确性:•关注模型生成的语言内容是否
- 机器学习中,准确率(Accuracy)、精确度(Precision)、召回率(Recall)、F1分数(F1Score) 分别是什么?有啥用?有啥意义?有啥缺陷?
shimly123456
NLP相关杂谈机器学习人工智能算法
首先明白四个名词:真正例TruePositive假正例FalsePositive真负例TrueNegative假负例FalseNegativeTP:被预测为真,实际为真的样本FP:被预测为真,实际为假的样本TN:被预测为假,实际为假的样本FN:被预测为假,实际为真的样本准确率(Accuracy)计算公式:(TP+TN)/(TP+FP+TN+FN)意义:被正确预测的样本占总样本的比例缺陷:尽管准确率
- 使用 Conda 管理 Python 环境的详细指南
小桥流水---人工智能
人工智能python安装库ancondacondapython开发语言
使用Conda管理Python环境的详细指南在安装Python时,我们通常会选择Anaconda作为管理工具,因为它不仅提供了Python的安装包,还集成了许多常用的库和工具,非常适合数据科学和机器学习的工作。Conda是Anaconda中的一个包和环境管理工具,通过使用Conda命令,我们可以方便地创建、管理和切换不同的Python环境。下面是一些常用的Conda命令,详细介绍如何使用这些命令来
- 初步理解数据结构
神探阿航
计算机产业科普与思考数据结构算法java职场和发展
引言数据结构是计算机科学中的核心概念之一,它是存储、组织和管理数据的方式,直接影响算法的效率和程序的性能。无论是开发一个简单的应用程序,还是设计一个复杂的系统,选择合适的数据结构都是至关重要的。本文将深入探讨常见的数据结构及其应用场景,并通过具体的Java代码示例帮助读者更好地理解如何在实际问题中选择和使用数据结构。1.什么是数据结构?数据结构是指在计算机中存储和组织数据的方式,使得数据可以高效地
- MIT6.S081学习总结-lab10:mmap
NullObjectError
Linux操作系统linux6.S081
lab10实现mmap介绍mmap和munmap系统调用允许UNIX程序对它们的地址空间进行详细的控制。它们可以用于在进程之间共享内存,将文件映射到进程地址空间,以及作为用户级页面错误方案的一部分,比如在讲座中讨论的垃圾收集算法。在本实验中,您将向xv6添加mmap和munmap,重点关注内存映射文件。void*mmap(void*addr,size_tlength,intprot,intflag
- AUTOSAR从入门到精通-【新能源汽车】高压配电管理(PDU/BDU)
格图素书
人工智能自动驾驶
目录前言几个高频面试题目【BDU/PDU】注释区别功能侧重方面结构组成方面工作原理方面在电动汽车中的角色方面知识储备主控电池管理系统BMS算法原理什么是高压配电管理(PDU/BDU)BDU定义:PDU定义pdu的作用是什么BDU各部件及成本构成BDU的组成CAE技术在研发中的作用汽车级PMIC在BDU和PDU中的应用分析KA84917UA的典型产品特性高压控制盒(PDU)生产厂家未来发展趋势前言P
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- 路径规划之启发式算法之二十九:鸽群算法(Pigeon-inspired Optimization, PIO)
搏博
算法大数据人工智能算法策略模式python机器学习启发式算法
鸽群算法(Pigeon-inspiredOptimization,PIO)是一种基于自然界中鸽子群体行为的智能优化算法,由Duan等人于2014年提出。该算法模拟了鸽子在飞行过程中利用地标、太阳和磁场等导航机制的行为,具有简单、高效和易于实现的特点,适用于解决连续优化问题。更多的仿生群体算法概括可以看我的文章:仿生的群体智能算法总结之一(十种)_最新群体算法-CSDN博客仿生的群体智能算法总结之二
- 机器学习笔记——正则化
好评笔记
补档机器学习人工智能论文阅读AIGC计算机视觉深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的正则化方法。文章目录正则化L1正则化(Lasso)原理使用场景优缺点L2正则化(Ridge)原理使用场景优缺点ElasticNet正则化定义公式优点缺点应用场景Dropout原理使用场景优缺点早停法(EarlyStopping)原理使用场景优缺点BatchNormalization(BN)原理使用
- 机器学习笔记——特征工程、正则化、强化学习
好评笔记
机器学习笔记机器学习人工智能AIAI编程算法工程师
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 【LeetCode 刷题】回溯算法-棋盘问题
Bran_Liu
LeetCode算法leetcodepython
此博客为《代码随想录》二叉树章节的学习笔记,主要内容为回溯算法棋盘问题相关的题目解析。文章目录51.N皇后37.解数独332.重新安排行程51.N皇后题目链接classSolution:defsolveNQueens(self,n:int)->List[List[str]]:board=[['.'for_inrange(n)]for_inrange(n)]res=[]defcheck(x:int,
- 基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析
kaka_R-Py
大数据可视化多元统计分析R语言数据分析与可视化算法聚类随机森林
基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析摘要近年来,随着数字化和信息化的快速发展,越来越多的人开始使用智能手机。文章基于某公司某年连续30天4万多位智能手机用户的监测数据,通过随机森林与RFM聚类分析模型对智能手机用户的监测数据进行挖掘和分析,有效地统计和归纳了用户对于A类APP的使用情况,模型准确度达到了80%,同时对于智能手机APP的开发和使用提出了相应的建议。该研究的数据驱
- Vue和Vue-Element-Admin(十):HTML和CSS快速学习笔记
A叶子叶
#Vue与Web开发vue.jshtmlcss
目录html标签分类网页布局盒子模型浮动定位css标签选择flex布局transform转换Vue开发tipsless和scssVScode常用插件后端语言框架很多,Java适合企业级应用(规范且稳定),Go适合高并发场景(比如云上产品),Python框架(bottle,tornado,django)简单且快速,也天然适合数据分析场景,PHP适合快速建站,前端变化小,所见即所得,因此抽空记录下学习
- 算法基础——一致性
黄雪超
大数据基础#算法基础大数据算法一致性
引入最早研究一致性的场景既不是大数据领域,也不是分布式系统,而是多路处理器。可以将多路处理器理解为单机计算机系统内部的分布式场景,它有多个执行单元,每一个执行单元都有自己的存储(缓存),一个执行单元修改了自己存储中的一个数据后,这个数据在其他执行单元里面的副本就面临数据一致的问题。随着时代发展,互联网公司的快速发展,单机系统在计算和存储方面都开始面临瓶颈,分布式是一个必然的选择,但是这也进一步放大
- 大数据(一)MaxCompute
胖当当技术
架构云计算odps学习大数据
一、引言作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路二、介绍MaxCompute(原名ODPS-OpenDataProcessingService)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。下面是MaxCompute的一些主要功能和应用场景:大规模数
- OpenCV图像旋转90度的最简单方法
时光荏苒-
opencv计算机视觉人工智能OpenCV
OpenCV是一个功能强大的计算机视觉库,提供了许多图像处理和计算机视觉算法。在OpenCV中,图像旋转是一项常见的操作。本文将介绍如何使用OpenCV将图像旋转90度的最简单方法。步骤1:导入OpenCV库在Python中使用OpenCV库需要先导入库。可以使用以下代码导入OpenCV库:importcv2步骤2:读取图像使用OpenCV读取图像需要使用cv2.imread()函数。该函数接受一
- 动态图最短路径的实时优化:应对边权重频繁更新的工程实践
热爱分享的博士僧
人工智能
在处理动态图中的最短路径问题时,尤其是面对边权重频繁更新的情况,传统的静态图算法如Dijkstra算法或Bellman-Ford算法可能不再适用或效率低下。这是因为每次边权重更新都需要重新计算整个图的最短路径,导致计算成本非常高。为了应对这种情况,需要采用一些特定的技术和策略来优化实时性能。1.动态最短路径算法A.动态Dijkstra算法虽然标准的Dijkstra算法是为静态图设计的,但可以通过缓
- FPGA电机控制
SCSS-L
FPGA控制电机
随着现在电力电子技术、微电子技术和电机控制理论技术的发展,电机控制器的发展经过了一下几个阶段:1、模拟电路控制阶段:优点:模拟控制器响应速度快,调速范围宽等。缺点:需要的元器件多,设计复杂,调试困难,并且难以实现复杂的电机控制算法。2、单片机(MCU)控制阶段:优点:单片机价格便宜,易于控制,广泛应用于低端电机控制领域。缺点:单片机采用RISC流水总线结构、且资源有限,开发周期长,运算处理慢,实时
- 【机器学习BDT】python代码实现(下)
mcoc132
Python机器学习机器学习python人工智能
文章目录BDT(BootstrapDecisionTree)python实现导入库分类树主体代码回归树主体代码输出函数完整代码后续可能添加的功能BDT(BootstrapDecisionTree)python实现代码仅供参考导入库importCART树_自己写importnumpy其中一个库之前写的分类树主体代码在原始数据权重基础上使用更新的数据权重以更新BDT模型.def分类树(self,BDT
- 音视频多媒体编解码器基础-codec
硬件学长森哥
嵌入式软件影像嵌入式驱动音视频驱动开发嵌入式硬件
如果要从事编解码多媒体的工作,需要准备哪些更为基础的内容,这里帮你总结完。因为数据类型不同所以编解码算法不同,分为图像、视频和音频三大类;因为流程不同,可以分为编码和解码两部分;因为编码器实现不同,分为硬编码和软编码;因为编解码硬件位置不同,可以分为片内、片外和独立编解码模块三类;软件常用的框架ffmpeg。音视频编解码(Audio-VideoCoding)是指将音频和视频信号进行压缩编码以及解码
- 目标检测的超级英雄:YOLO带你识别世界
星际编程喵
Python探索之旅目标检测YOLO目标跟踪人工智能计算机视觉python
前言YOLO(YouOnlyLookOnce)是计算机视觉领域一颗璀璨的明星,它以高效、快速著称,成为目标检测算法的代表。今天,我们一起走进YOLO的世界,看看它如何神奇地识别图像中的物体。当然,不用担心,这篇文章会让你轻松理解,并且我会用幽默、通俗的语言给大家展示这项技术。相信我,看完之后,你会觉得YOLO不仅是个算法,更像是个看得懂、说得清的技术伙伴。简介YOLO不仅是一个简单的目标检测模型,
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号