- LLM 进展和前进道路
晨曦_子画
人工智能学习人工智能
近年来,语言模型取得了重大进展。这一进步是对数十亿个参数进行广泛训练和调整的结果,也是商业用途基准测试的结果。这项工作的起源可以追溯到1950年代,当时自然语言理解和处理的研究开始了。本文旨在概述过去70年语言模型的历史和演变。它还将检查当前可用的大型语言模型(LLM),包括其架构、调优参数、企业就绪情况、系统配置等,以深入了解其训练和推理过程。这种探索将使我们能够了解该领域的进展,并评估可用于商
- 论文-A Stack-Propagation Framework with Token-Level Intent Detection for Spoken Language Understanding
魏鹏飞
1.简称论文《AStack-PropagationFrameworkwithToken-LevelIntentDetectionforSpokenLanguageUnderstanding》,作者LiboQin(HarbinInstituteofTechnology,China),经典的NLU论文(SemanticFrame)。2.摘要意图检测和槽位填充是构建口语理解(SLU)系统的两个主要任务。
- 大模型的学习 LLaMa和ChatGLM,minichatgpt4
贝猫说python
学习llama人工智能
LLaMa和ChatGLM,minichatgpt4什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?答:Bert的模型由多层双向的Transformer编码器组成,由12层组成,768隐藏单元,12个head,总参数量110M,约1.15亿参数量。NLU(自然语言理解)任务效果很好,单卡GPU可以部署,速度快,V100GPU下1秒能处理2千条以上。ChatGLM-6B,
- 如何构建企业专属GPT
鲸品堂
人工智能gptchatgpt
大语言模型(LLM)具有令人印象深刻的自然语言理解和生成能力,2022年11月底OpenAI发布了ChatGPT,一跃成为人工智能AI领域的现象级应用。但由于LLM的训练数据集主要来源于互联网数据,企业私域信息并未被LLM所训练,当客户查询关于企业的业务信息的时候,LLM会出现幻觉,无法进行正确回应。因此,企业界(尤其是中小型企业)具有强烈的愿望能够打通企业数据和LLM的互联网数据,构建企业专属G
- AI交互数字人究竟适合什么领域使用?
广州虚拟动力-动捕&虚拟主播
文旅数字人AI人工智能3d科技娱乐ai政务旅游
AI交互数字人可以像真人一样拥有流畅的对话能力、连贯的肢体动作,并且在大模型的加持下,通过整合语音交互、自然语言理解、图像识别等AI交互数字人技术,数字人可以轻松为用户提供“面对面”的语音对话交互服务。AI交互数字人,赋能多领域数字化发展:文旅领域AI交互数字人可以化身虚拟讲解员、数字迎宾、数字导游等,在博物馆、科技馆、党建馆、企业文化展厅中,高效的为参观者提供有关展览、展品等问题,并且提供个性化
- 闲聊自然语言处理NLP
热血沸腾
原文链接无论在工程界还是学术界自然语言处理(NLP)一直是一个比较热的话题,尤其随着近些年深度学习的发展给NLP也带来一些新思路。对于这个话题随便聊聊,想到哪写到哪。其实自然语言理解很难为什么说让机器真正的理解自然语言很难呢?人类语言从出现至今经过上万年的演变,规则极其错综复杂,就连人类自己在学习一门外语的时候还经常发语法错误更不用说机器了。例如,一个句子由多个词语组成,通过各种组合能够得到更为复
- LLM大模型常见问题解答(2)
lichunericli
LLM人工智能语言模型
对大模型基本原理和架构的理解大型语言模型如GPT(GenerativePre-trainedTransformer)系列是基于自注意力机制的深度学习模型,主要用于处理和生成人类语言。基本原理自然语言理解:模型通过对大量文本数据的预训练,学习到语言的统计规律,从而能够在不同的语言任务上表现出自然语言理解的能力。迁移学习:GPT类模型首先在一个广泛的数据集上进行预训练,以掌握语言的通用表示,然后可以在
- ChatGPT 4:新特性与优势
Draven21
ChatGPTchatgpt
ChatGPT4:新特性与优势一、引言ChatGPT4是一款备受瞩目的人工智能模型,它以其强大的语言生成能力和智能回答能力,为用户提供了更高效、更便捷的对话体验。为了能够充分享受ChatGPT4的各项功能,本文将向您详细介绍其新特性,让您轻松掌握ChatGPT4的各项优势。二、新特性一:更高的自然语言理解能力ChatGPT4在自然语言理解方面有了显著的提升。这意味着它能够更好地理解用户的输入,并根
- 探索ChatGPT4:新一代人工智能语言模型的突破
Draven21
ChatGPTchatgpt人工智能gpt-3
ChatGPT4,作为最新一代的语言处理模型,代表了人工智能在自然语言理解和生成方面的最新突破。本文将深入介绍ChatGPT4的新特性,探讨其在各个领域的潜在应用。ChatGPT4概述在继承了前一代模型的强大基础之上,ChatGPT4引入了多项创新技术,提供了更加精细的语言理解能力,更高的互动性,以及更广泛的应用范围。新特性详解更强大的模型架构ChatGPT4采用了更为复杂的神经网络架构,使模型的
- 阿里云智能语音交互:API连接,助力用户运营
api
【无代码开发,轻松实现智能语音交互】随着技术的不断进步,智能客服系统已经变得越来越高效。阿里云智能语音交互技术是这一进步的典型代表。这种基于先进的语音识别、语音合成以及自然语言理解技术的服务,为用户提供了一种全新的人机交互体验。更重要的是,企业可以通过无代码开发轻松连接和集成这些服务,极大地提升了企业运营的效率。【API连接,简易的集成过程】对于想要使用阿里云智能语音交互服务的企业来说,连接和集成
- DALLE3.0结合ChatGPT生成专属prompt(健身版)
yueqingll
chatgptprompt
目录免费技术网站分享:Gnomic-智能体平台1.DALLE3.02.创作体验3.生成案例的Prompt4.图片展示5.声明免费技术网站分享:Gnomic-智能体平台1.DALLE3.0DALL-E3是OpenAI再次展现其技术实力的力作,相较于前代版本,它实现了显著飞跃。倚仗先进的Transformer架构所赋予的强大自然语言理解能力,DALL-E3能够深度领会用户的设计意图,并以令人惊叹的准确
- DALLE3.0结合ChatGPT生成prompt(表情四拼版)
yueqingll
chatgptprompt
目录免费技术网站分享:Gnomic-智能体平台1.DALLE3.02.创作体验3.生成案例的Prompt4.图片展示5.声明免费技术网站分享:Gnomic-智能体平台1.DALLE3.0DALL-E3是OpenAI再次展现其技术实力的力作,相较于前代版本,它实现了显著飞跃。倚仗先进的Transformer架构所赋予的强大自然语言理解能力,DALL-E3能够深度领会用户的设计意图,并以令人惊叹的准确
- DALLE3.0结合ChatGPT生成专属prompt(甜美版)
yueqingll
chatgptprompt
目录1.DALLE3.02.创作体验3.生成案例的Prompt4.图片展示5.声明免费技术网站分享:Gnomic-智能体平台1.DALLE3.0DALL-E3是OpenAI再次展现其技术实力的力作,相较于前代版本,它实现了显著飞跃。倚仗先进的Transformer架构所赋予的强大自然语言理解能力,DALL-E3能够深度领会用户的设计意图,并以令人惊叹的准确度将其细腻地转化为视觉艺术作品。2.创作体
- DALLE3.0结合ChatGPT生成专属prompt(杂志版)
yueqingll
chatgptprompt
目录免费技术网站分享:Gnomic-智能体平台1.DALLE3.02.创作体验3.生成案例的Prompt4.图片展示5.声明免费技术网站分享:Gnomic-智能体平台1.DALLE3.0DALL-E3是OpenAI再次展现其技术实力的力作,相较于前代版本,它实现了显著飞跃。倚仗先进的Transformer架构所赋予的强大自然语言理解能力,DALL-E3能够深度领会用户的设计意图,并以令人惊叹的准确
- DALLE3.0结合ChatGPT生成专属prompt(汽车版)
yueqingll
chatgptprompt汽车
目录免费技术网站分享:Gnomic-智能体平台1.DALLE3.02.创作体验3.生成案例的Prompt4.图片展示5.声明免费技术网站分享:Gnomic-智能体平台1.DALLE3.0DALL-E3是OpenAI再次展现其技术实力的力作,相较于前代版本,它实现了显著飞跃。倚仗先进的Transformer架构所赋予的强大自然语言理解能力,DALL-E3能够深度领会用户的设计意图,并以令人惊叹的准确
- 大模型学习笔记二:prompt工程
谢白羽
学习笔记prompt
文章目录一、经典AI女友Prompt二、prompt怎么做?1)注重格式:2)prompt经典构成3)简单prompt的python询问代码4)python实现订阅手机流量套餐的NLU5)优化一:加入垂直领域推荐6)优化二:改变语气、口吻等风格。7)优化三:实现统一口径8)纯OpenAI方案9)纯OpenAI和自制问答的对比三、prompt提示工程师进阶技巧1)思维链(ChainofThought
- Deep learning笔记
提着木剑走天下
深度学习是一种特征学习方法,通过非线性的简单模块组合成的表示模型可以将低级别的原始数据转换为高级别的抽象表示。它擅长从多维数据中获取有用推理,被广泛用于科学、商业和政府领域。更令人惊讶的是,深度学习在自然语言理解(NLP)的各项任务中产生了非常可喜的成果,特别是主题分类、情感分析、自动问答和语言翻译。深度学习的核心方面是,上述各层的特征都不是利用人工工程来设计的,而是使用一种通用的学习过程从数据中
- 探索ChatGPT-4:智能会话的未来已来
Draven21
chatgpt人工智能
深入了解ChatGPT-4:前沿AI的强大功能ChatGPT-4是最先进的语言模型之一,由OpenAI开发,它在自然语言理解和生成方面的能力已经达到了新的高度。如今,ChatGPT-4已经被广泛应用于多个领域,从教育到企业,再到技术支持,展示了其多方面的实用性和影响力。ChatGPT-4Interaction丰富的语言理解能力广阔的知识领域ChatGPT-4拥有对广泛主题的深厚理解,这得益于其庞大
- OpenAI GPT 和 GPT2 模型详解
NLP与人工智能
OpenAIGPT是在GoogleBERT算法之前提出的,与BERT最大的区别在于,GPT采用了传统的语言模型进行训练,即使用单词的上文预测单词,而BERT是同时使用上文和下文预测单词。因此,GPT更擅长处理自然语言生成任务(NLG),而BERT更擅长处理自然语言理解任务(NLU)。1.OpenAIGPTOpenAI在论文《ImprovingLanguageUnderstandingbyGener
- 对话机器人(二)——RASA概述与安装
就要辣谢谢。
对话机器人人工智能自然语言处理深度学习
注:RASA版本为3.11.RASA简介RASA是构建对话机器人的开源机器学习框架。NLU:确定意图,捕获关键上下文信息。CORE:提供多轮对话管理机制,自动学习上下文与当前意图的关联性。2.RASA系统架构RASA开源体系结构NLU:意图分类、实体提取、响应检索。以管道的方式处理用户对话。对话管理:根据上下文决定对话中的下一个动作。代理:接收用户输入消息,返回RASA系统的回答。连接NLU和DM
- RASA3.X(二)--常见命令详解
hanscalZheng
RASARASA命令模式
目录创建新项目训练模型交互式学习与助手交谈启动服务启动操作服务可视化故事评估模型训练和测试数据拆分创建新项目以下命令使用示例训练数据为你建立一个完整的项目。rasainit这将创建以下文件:.├──__init__.py├──actions.py├──config.yml├──credentials.yml├──data│├──nlu.md│└──stories.md├──domain.yml├─
- Rasa课程系列之:业务对话机器人Rasa核心算法DIET及TED论文详解及源码实现
StarSpaceNLP667
StarSpaceNLPTransformer算法人工智能Rasa课程培训面试深度学习自然语言处理
对一个智能业务对话系统而言,语言理解NLU及Policies是其系统内核的两大基石。Rasa团队发布的最重磅级的两篇论文DIET:LightweightLanguageUnderstandingforDialogueSystems及DialogueTransformers是其基于在业界落地场景的多年探索而总结出来的解决NLU和Policies最核心的成果结晶:其中DIET是Intent识别和Ent
- 人工智能未来发展的10大趋势
AI论道
AI实战宝典人工智能
目录背景1.自我进化的算法1.1技术概况1.2发展趋势2.可解释AI2.1技术概况2.2发展趋势3.边缘AI3.1技术概况3.2发展趋势4.AI伦理与政策4.1技术概况4.2发展趋势5.AI与增强现实的融合5.1技术概况5.2发展趋势6.自然语言理解的进步6.1技术概况6.2发展趋势7.机器人的智能化7.1技术概况7.2发展趋势8.精准医疗8.1技术概况8.2发展趋势9.AI在教育中的应用9.1技
- Improving Language Understanding by Generative Pre-Training 论文阅读
老熊软糖
论文阅读人工智能机器学习
论文题目:通过生成式预训练提高语言理解能力GPT的全称:GenerativePre-trainedTransformer。Generative是指GPT可以利用先前的输入文本来生成新的文本。GPT的生成过程是基于统计的,它可以预测输入序列的下一个单词或字符,从而生成新的文本。【参考自春日充电季——ChatGPT的GPT是什么意思】机翻:自然语言理解包括一系列不同的任务,如文本蕴含、问题回答、语义相
- ChatGPT高效提问—基础知识(NLP)
Bruce_Liuxiaowei
笔记总结经验chatgpt自然语言处理人工智能
ChatGPT高效提问—基础知识(NLP)自然语言处理(NatureLanguageProcessing,NLP)是计算机科学和人工智能领域的一个重要分支,旨在使计算机能够自动处理、理解和生成人类语言。NLP包括文本预处理、自然语言理解、文本分类、情感分析、机器翻译、自然语言生成等各种技术。这些技术都是为了使计算机更好地处理自然语言并实现自然的人机交互。1.3.1NLP的应用NLP技术可以应用于以
- ChatGPT等大模型AI能干什么?
金木讲编程
AI人工智能chatgpt
ChatGPT等大型模型AI,拥有广泛的应用能力,可以执行以下任务:1、自然语言理解(NLU):能够理解和解释自然语言文本,包括回答问题、理解语境、识别实体等。2、自然语言生成(NLG):能够生成自然语言文本,包括写作文章、创作故事、生成对话等。3、对话系统:能够进行自然、流畅的对话,回答用户提出的问题,提供信息或娱乐。4、编码转换:能够将自然语言描述转换为编程代码,执行简单的编码任务。5、翻译:
- 深度学习有何新进展
小狗蛋ing
鸿蒙开源软件
深度学习的进展深度学习是人工智能领域的一个重要分支,它基于人工神经网络进行模型构建和训练,模拟人类大脑对数据特征的学习过程。随着计算能力的提升和大数据的积累,深度学习技术在图像识别、语音处理、自然语言理解等多个方面取得了显著进展。近年来,深度学习的新进展主要集中在以下几个方面:网络结构的创新:为了提高模型的性能和效率,研究者们不断探索新的网络结构。例如,卷积神经网络(CNN)在图像处理领域取得了巨
- 二、人工智能之提示工程(Prompt Engineering)
挑大梁
#大模型人工智能prompt大数据
黑8说岁月如流水匆匆过,哭一哭笑一笑不用说。黑8自那次和主任谈话后,对这个“妖怪”继续研究,开始学习OpenAIAPI!关注到了提示工程(PromptEngineering)的重要性,它包括明确的角色定义、自然语言理解(NLU)、对话状态跟踪(DST)、自然语言生成(NLG)等方面。通过构建合理的思维链,成功地让模型生成更加自洽的对话。同时,还学会了如何防范攻击、进行内容审核等关键技能。斗转星移,
- 初识大模型
一刀道人
大模型大模型
1大模型定义:“大模型”全称为大型语言模型(LLM),,狭义上指基于深度学习算法进行训练的自然语言处理(NLP)模型,主要应用于自然语言理解和生成等领域,广义上还包括机器视觉(CV)大模型、多模态大模型等。大模型“大”的特点体现在“大数据+大算力+大参数”大模型是指具有数千万甚至数亿参数的深度学习模型,为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。2大模型基本原
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc