- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- opencv cuda例程 OpenCV和Cuda结合编程
weixin_44602056
opencvC++
本文转载自:https://www.fuwuqizhijia.com/linux/201704/70863.html此网页,仅保存下来供随时查看一、利用OpenCV中提供的GPU模块目前,OpenCV中已提供了许多GPU函数,直接使用OpenCV提供的GPU模块,可以完成大部分图像处理的加速操作。该方法的优点是使用简单,利用GpuMat管理CPU与GPU之间的数据传输,而且不需要关注内核函数调用参
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- linux 下 CUDA + Opencv 编程 之 CMakeLists.txt
maxruan
编程图像处理CUDAopencvlinuxc++cuda
CMAKE_MINIMUM_REQUIRED(VERSION2.8)PROJECT(medianFilterGPU)#CUDApackageFIND_PACKAGE(CUDAREQUIRED)INCLUDE(FindCUDA)#CUDAincludedirectoriesINCLUDE_DIRECTORIES(/usr/local/cuda/include)#OpenCVpackageFIND_P
- Win11及CUDA 12.1环境下PyTorch安装及避坑指南:深度学习开发者的福音
郁云爽
Win11及CUDA12.1环境下PyTorch安装及避坑指南:深度学习开发者的福音【下载地址】Win11及CUDA12.1环境下PyTorch安装及避坑指南本资源文件旨在为在Windows11操作系统及CUDA12.1环境下安装PyTorch的用户提供详细的安装步骤及常见问题解决方案。无论你是初学者还是有经验的开发者,这份指南都将帮助你顺利完成PyTorch的安装,并避免常见的坑项目地址:htt
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)_cuda12(1)
2401_84557821
程序员pycharmpytorchide
查看cuda版本输入setcuda查看环境变量如上两图即为下载成功!##二、安装Pytorch#
- jupyter notebook参数化运行python
HackerTom
乱搞pythonjupyternotebook
Updates(2019.8.1419:53)吃饭前用这个方法实战了一下,吃完回来一看好像不太行:跑完一组参数之后,到跑下一组参数时好像没有释放之占用的GPU,于是notebook上的结果,后面好几条都报错说cudaoutofmemory。现在改成:将notebook中的代码写在一个python文件中,然后用命令行运行这个文件,比如:#autorun.pyimportos#print(os.get
- win11编译llama_cpp_python cuda128 RTX30/40/50版本
System_sleep
llamapythonwindowscuda
Geforce50xx系显卡最低支持cuda128,llama_cpp_python官方源只有cpu版本,没有cuda版本,所以自己基于0.3.5版本源码编译一个RTX30xx/40xx/50xx版本。1.前置条件1.访问https://developer.download.nvidia.cn/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- GPU编程实战指南03:CUDA开发快速上手示例,GPU性能碾压实测
anda0109
CUDA并行编程linux运维服务器
上一节《GPU编程指南02:CUDA开发快速上手示例》中我们完成了一个使用GPU进行加减乘除四则运算的例子。没有学习的可以先跳转学习这一节,因为它有详细的代码注释,学习完这一篇,你就基本入门了GPU编程。在这个例子中,我们使用GPU进行运算,同时也会用CPU进行运算,然后将两者的结果进行对比,以确保我们代码运行的结果是正确的。既然CPU可以计算,为什么要用GPU呢?因为GPU可以进行并行计算,计算
- DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)
Allen_LVyingbo
医疗高效编程研发健康医疗人工智能python
DeepSeekR1-32B微调实战指南├──1.环境准备│├──1.1硬件配置││├─全参数微调:4*A10080GB││└─LoRA微调:单卡24GB│├──1.2软件依赖││├─PyTorch2.1.2+CUDA││└─Unsloth/ColossalAI│└──1.3模型加载│├─4bit量化加载│└─FlashAttention2加速├──2.数据集构建│├──2.1数据源││├─CMD
- 记录 | python os添加系统环境变量
极智视界
pythonlinuxos系统环境变量
python中通过os来添加系统环境变量:#设置os系统环境变量os.environ['CUDA_VISIBLE_DEVICES']='0'os.environ['p2c']='1'os.environ['p2o']='0'os.environ['io']='0'#获取os系统环境变量os.getenv('CUDA_VISIBLE_DEVICES')os.getenv('p2c')...
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 安装CUDA12.1和torch2.2.1下的DKG
超级无敌大好人
python
1.创建python虚拟环境setNO_PROXY=*condadeactivatecondaenvremove-nfindkgcondacreate-nfindkgpython=3.11condaactivatefindkgcondainstallpackagingsetuptoolspipuninstallnumpycondainstallnumpy=1.24.3请注意,DKG需要python
- PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶
凡人的AI工具箱
深度学习pytorch学习人工智能pythonAI编程
PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶在深度学习处理序列数据时,循环神经网络(RNN)家族的模型扮演着至关重要的角色。今天,我们将深入探讨循环神经网络的进阶内容,包括BiLSTM的工作机制、注意力机制的数学原理,以及Transformer编码层的实现。目录BiLSTM的双向信息流机制LSTM回顾BiLSTM架构解析时序特征融合策略BiLSTM实现与案例注意力机制原理
- 使用 DeepSeek 训练属于自己写小说的模型
xinxiyinhe
DeepSeek人工智能python
如果你想使用DeepSeek训练一个专门用于写小说的模型,以下是详细的指导指南。DeepSeek是一个强大的深度学习框架,支持自然语言处理任务。我们将基于DeepSeek的API和工具,结合HuggingFace的Transformers库,完成模型的训练和部署。详细指南:使用DeepSeek训练写小说模型1.环境准备1.1安装必要的库确保你已经安装了以下Python库:pipinstalltor
- Keras深度学习实战——手写文字识别
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——手写文字识别1.介绍本教程将介绍如何使用Keras深度学习框架进行手写文字识别。手写文字识别是指将手写文字转换为相应的文本,该文本可
- PyTorch 深度学习快速入门教程
有人给我介绍对象吗
AI论文写作深度学习pytorch人工智能
PyTorch深度学习快速入门教程PyTorch是一个灵活且易用的深度学习框架,支持动态图计算,广泛用于学术研究和工业应用。本教程将带你快速掌握PyTorch的基本用法,涵盖张量(Tensor)操作、自动求导(Autograd)、构建神经网络以及模型训练。1.安装PyTorch在终端或命令行中运行以下命令安装PyTorch:pipinstalltorchtorchvisiontorchaudio安
- 【AI学习从零至壹】pytorch基础
flyyyya
AI算法人工智能学习pytorch
pytorch基础pytorch基础张量(Tensor)张量的属性张量的索引和切⽚:张量的拼接张量的算数运算单元素张量In-place操作与numpy之间的转换张量到numpy数组计算图静态计算图动态计算图pytorch计算图可视化pytorch基础PyTorch是⼀个开源的深度学习框架,由Facebook的⼈⼯智能研究团队开发和维护,在学术界和⼯业界都得到了⼴泛应⽤。张量(Tensor)张量(T
- 深圳传音控股AI算法岗内推
飞300
人工智能pythonjava业界资讯
1扎实的数学基础,熟练掌握机器学习相关的数学知识。2熟悉常用的机器学习算法,掌握常用的深度学习模型与编程实践。3熟悉Pytorch或TensorFlow等深度学习框架,有一定项目经验。4良好的沟通协调能力,执着的专业精神。5参与部门AI创新项目,包括自动化测试平台、BPM流程管理等项目开发登录链接:transsion.zhiye.com/campus/jobs填写我的推荐码:EVHPB3投递,简历
- win11编译pytorch cuda128版本流程
System_sleep
pytorch人工智能python编译windowscuda
Geforce50xx系显卡最低支持cuda128,torchcu128release版本目前还没有释放,所以自己基于2.6.0源码自己编译wheel包。1.前置条件1.使用visualstudioinstaller安装visualstudio2022,工作负荷选择【使用c++的桌面开发】,安装完成后将“VC\Tools\MSVC\\bin\Hostx64\x64”对应的路径加入环境变量;2.访问
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- 国内开源深度学习框架
we19a0sen
深度学习人工智能
目录一、国内开源深度学习框架1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)二、快速入手1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)三、基础教程1、Paddle
- yolov8训练模型、测试视频
灰灰学姐
深度学习神经网络YOLOpython机器学习
yolov8先训练生成best.pt文件,用这个生成的模型进行视频的测试因为本来用的代码生成的测试视频打不开,格式应该是损坏了,或者部分帧没有正常保存吧。修改了一下代码,现状可以正常打开生成的视频了。1、训练代码train.pyimportos#os.environ["CUDA_VISIBLE_DEVICES"]="3"#同样是选择第3块GPUfromultralyticsimportYOLO#L
- 深度学习进阶:TensorFlow实战指南
ELSON麦香包
本文还有配套的精品资源,点击获取简介:《TensorFlow实战Google深度学习框架》详细指导读者学习TensorFlow,涵盖基础概念、数据流图、API使用、张量和变量操作,深度学习基础如CNN和RNN,以及自定义层和优化算法。书中还提供使用TensorFlow构建和训练深度学习模型的实例,包括AlexNet、VGG、ResNet以及LSTM和GRU,并通过图像分类和文本情感分析等实战案例,
- 解决No such file or directory: ‘:/usr/local/cuda:/usr/local/cuda:...‘
北冰洋漂流
环境配置linux服务器运维
【报错】error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda:/usr/local/cuda:/usr/local/cuda:/usr/local/cuda/bin/nvcc'【解决方法】命令行输入命令exportCUDA_HOME=/usr/local/cuda重新运行安装(如pipinstall-v-e.)
- 深度学习day1
孤城laugh
深度学习人工智能笔记学习机器学习
深度学习day11.深度学习与机器学习的区别1.1特征提取方面1.2数据量与计算性能要求1.3算法代表2.深度学习框架之TensorFlow2.1TensorFlow基础2.2TensorFlow基础知识1.**张量(Tensor)**:多维数组、多维列表2.**变量(Variable)**:用于表示程序处理的共享持久状态3.**图与函数**4.**可视化学习(TensorBoard)**:用来展
- PyTorch 与 NVIDIA GPU 的适配版本及安装
小赖同学啊
人工智能pytorch人工智能python
PyTorch与NVIDIAGPU的适配版本需要通过CUDA和cuDNN来实现。以下是详细的安装教程,包括如何选择合适的PyTorch版本以及如何配置NVIDIAGPU环境。1.检查NVIDIAGPU和驱动1.1检查GPU型号确保你的机器上有NVIDIAGPU,并知道其型号。可以通过以下命令检查:nvidia-smi输出示例:+-----------------------------------
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C