- 机器视觉在OCR(字符识别)检测中的应用
目前,对印刷品的检测工作一般采用人工方法进行质量检测,然后再由工作人员将成品和次品进行分类堆放。这样一来,不仅增加了工作人员的劳动强度,而且检测质量也难以得到保障。其次,则是效率低下,浪费时间成本。印品质量自动检测系统满足印刷企业对于产品质量控制的需求。系统采用自主研发的表面缺陷检测、色彩测量、快速建模等核心算法,广泛适用于包装印刷、标签印刷、商业印刷质量在线检测和印后终检。机器视觉用于印刷、包装
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 街道垃圾识别难?陌讯视觉算法实测准确率突破95%
2501_92487900
算法边缘计算目标检测视觉检测计算机视觉
开篇痛点:街道垃圾识别的技术挑战在智慧城市和环保监管场景中,街道垃圾的实时检测一直是个难题。传统视觉算法(如YOLOv5、FasterR-CNN)在复杂街道场景下表现不佳,主要面临以下问题:光照干扰:早晚光线变化导致误检(如阴影被识别为垃圾)小目标漏检:饮料瓶、烟头等小物体在640x640输入下仅占10x10像素遮挡问题:垃圾桶周边堆积物造成特征混淆某环保科技公司实测数据显示,开源模型在真实场景中
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- CORS(跨域资源共享):跨域请求的解决方案
阿珊和她的猫
javascript前端
前端开发工程师、技术日更博主、已过CET6阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1牛客高级专题作者、打造专栏《前端面试必备》、《2024面试高频手撕题》、《前端求职突破计划》蓝桥云课签约作者、上架课程《Vue.js和Egg.js开发企业级健康管理项目》、《带你从入门到实战全面掌握uni-app》文章目录一、CORS的基本概念1.简单请求2.预检请求二、设置CORS使用Nod
- jenkins启动报错,一直无法启动
jenkins启动报错,一直无法启动问题背景服务器:阿里云ECS操作系统:Centos7Jenkins版本:2.405通过添加jenkins仓库进行安装,安装成功,但是未能启动成功,一直处于失败状态解决方式1、检查用户权限sudopasswd-Sjenkins#提示信息如下,说明jenkins用户被锁定了jenkinsLK2024-09-13-1-1-1-1(Passwordlocked.)2、检
- MongoDB数据库备份及恢复策略详解
魑魅丶小鬼
本文还有配套的精品资源,点击获取简介:MongoDB,作为流行的开源NoSQL数据库,提供灵活、高性能和易用性的特点。为了保证数据安全和业务连续性,进行有效的备份和恢复策略至关重要。本文将介绍MongoDB的备份工具和方法,包括mongodump和mongorestore命令行工具,以及更复杂的云备份解决方案。同时,将通过一个中等规模的数据集实例来详细说明备份流程,强调备份前停止写入、执行备份、检
- 垂起固定翼无人机应用及技术分析
云卓SKYDROID
无人机云卓科技科技科普高科技
一、主要应用行业1.能源基础设施巡检电力巡检:适用于超高压输电线路通道的快速巡查,实时回传数据提升智能运检效率。油田管道监测:利用长航时特性(1.5-2小时)对大范围管道进行隐患排查,减少人力巡查成本。2.测绘与地理信息在山区、丘陵等复杂地形实现高精度航测,克服传统固定翼需跑道的限制。单架次可完成200平方公里区域的测绘任务,效率较旋翼机提升3倍以上。3.森林与生态监管通过热红外载荷监测林火隐患,
- 目标检测新纪元:DETR到Mamba实战解析
加油吧zkf
图像处理python分类人工智能目标检测
【实战分享】目标检测的“后DEⱯ”时代:DETR/DINO/RT-DETR及新型骨干网络探索(含示例代码)目标检测从YOLO、FasterR-CNN到Transformer结构的DETR,再到DINO、RT-DETR,近两年出现了许多新趋势:更高效的端到端结构、更少的手工设计(比如不再需要NMS)、以及新型轻量化骨干网络(比如Mamba、ConvNeXt、ViT等)被引入检测任务中。作为从事目标检
- 探索AI时代:全国启动人工智能与未来公益讲座
私域合规研究
人工智能百度
人工智能与未来——AI赋能中小企业数字化升级公益讲座一、讲座背景随着科技的飞速发展,人工智能(AI)已经深入到了各行各业,为了推动AI技术在中小企业的广泛应用,助力企业拥抱新技术,迎接新机遇,拟申请联合组织AI赋能中小企业数字化升级公益讲座。讲座内容涵盖包括AI新媒体矩阵营销、AI智能跨境获客平台、AI+直播电商认证,AI+数字展厅、中检AI报关风险诊断及合规AI制单系统、AI+商品追溯、AI个人
- 机器学习在智能制造业中的应用:质量检测与设备故障预测
Blossom.118
机器学习与人工智能机器学习人工智能深度学习神经网络机器人sklearntensorflow
随着工业4.0和智能制造的推进,制造业正经历着一场深刻的数字化转型。智能制造业通过整合物联网(IoT)、大数据和机器学习等先进技术,实现从生产计划到质量控制的全流程优化。机器学习技术在智能制造业中的应用尤为突出,尤其是在质量检测和设备故障预测方面。本文将探讨机器学习在智能制造业中的应用,并分析其带来的机遇和挑战。一、智能制造业中的质量检测(一)传统质量检测方法的局限性传统的质量检测主要依赖于人工检
- 多模态进化论:GPT-5V图文推理能力在工业质检中的颠覆性应用
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《多模态进化论:GPT-5V图文推理能力在工业质检中的颠覆性应用》副标题:2025年实测报告显示误检率降至0.0038%,重构制造业质量标准体系封面建议:GPT-5V识别微米级电路板缺陷的对比图,背景显示传统AOI与GPT-5V的误检率曲线一、工业质检的范式革命▶︎传统视觉检测的三大死穴传统AO
- 信创适配实践:ARM64 架构 KylinOS 系统下 Docker 部署 Nginx 及跨架构数据迁移全攻略
H03004
架构dockernginx
目录一、信创背景与实践价值二、环境筹备:ARM64+KylinOS基础配置(一)系统预检:锁定架构与版本(二)Docker安装:适配KylinOS的踩坑指南1.依赖预处理(解决KylinOS源差异)2.配置ARM64专属镜像源3.安装与加速优化4.验证安装三、Nginx容器全流程:从镜像到运维(一)镜像选择:ARM64适配的核心逻辑(二)容器启动:参数解析与权限踩坑1.启动命令(含持久化挂载)2.
- 【设计模式】单例模式之双检锁(Double-Checked Locking)
浩瀚之水_csdn
#软件模式设计模式单例模式
双检锁(Double-CheckedLocking)是一种在多线程环境下高效实现单例模式的技术,它结合了延迟初始化和线程安全的优点,避免了不必要的同步开销。核心思想双检锁的核心思想是:第一重检查(无锁):快速检查实例是否已创建加锁保护:确保只有一个线程进入创建流程第二重检查(有锁):再次检查实例是否已创建创建实例:如果仍未创建,则创建实例经典实现(C++11之前)#includeclassSing
- SAP PM模块之维护策略、维护计划、工单
一碗茶水
SAPPM维护策略维护计划工单PM
目录一、维护策略(Strategy)二、维护计划(Plan)三、应用场景举例四、维护策略、维护计划、工单逻辑图五、工单状态详解六、常用事务代码6.1预防性维护6.1.1.维护计划6.1.2.任务清单6.2.设备检维修6.2.1.维护通知单6.2.2.维护工单6.3.设备分析七、最佳实践在SAPPM模块中,维护策略(MaintenanceStrategy)和维护计划(MaintenancePlan)
- 2025年检测相机十大品牌测评:工业级精度与场景化解决方案解析
lingling009
数码相机
一、引言在工业自动化与智能制造领域,检测相机作为质量管控的核心硬件,正以“高精度、高速度、高适应性”的特性重塑生产流程。这类设备通过光学成像与智能算法结合,实现对工件表面缺陷、尺寸偏差、装配精度的精准检测,效率较传统人工目检提升10-50倍。本文聚焦全球主流的10款检测相机,结合技术参数与实战场景,为汽车制造、新能源、3C电子等行业提供专业选型指南。二、国产领军品牌:迁移科技EpicEyePro系
- 【脱单秘籍,单身狗必看】如何变得会与异性聊天?
aiquan6271
面试数据库
时间:2015-03-1311:34来源:简书作者:迎刃导语:与人社交时如何很会聊天是个大家都非常感兴趣的话题,尤其是非常关注与异性聊天的问题。我综合了此前写过的若干篇文字,有了下面的关于聊天的方法论总结。从3个方面入手,让大家看完就能去实践。1,心态篇2,原因篇3,策略篇【心态篇】我发现如果没有一个良好的心态作为支撑和前提,做任何事情都会事倍功半。反之,心态好,自信心足,就会有强大的抗挫折承受力
- YOLO理论知识简单了解
老农民编程
视觉与YoLo模型认知YOLO
目录前言一、YOLO是什么?以及核心思想?1、目标检测的本质与分类2、YOLO核心思想二、为什么使用YOLO,优势是什么?三、怎么使用YOLO模型?总结前言对YOLO模型的简单理解,对其进行记录。一、YOLO是什么?以及核心思想?YOLO(YouOnlyLookOnce)模型是一种用于实时目标检测的深度学习模型,所以首先需了解目标检测的概念。1、目标检测的本质与分类1.目标检测本质:目标在哪里:检
- 在 CentOS 7.9 中 Node 18.20.2 安装指南
吴启维
运维Linuxcentoslinux运维
一、CentOS7.9专属安装流程1.环境预检(CentOS7.9必须)#确认系统版本(必须为7.9)cat/etc/redhat-release#输出:CentOSLinuxrelease7.9.2009(Core)#安装基础依赖(兼容7.9的glibc库)sudoyuminstall-yglibc-corexztarwget2.安全下载指定版本#使用国内镜像源(避免官方源中断)NODE_VER
- 实体零售遇冷!线上杂货将超车,eBay非食品类或迎12%增长红利?
跨境卫士-小卓
零售经验分享
如果你最近走进美国或欧洲的大型商超,会发现一个微妙却显著的变化:人流量变少了,货架更整齐,甚至收银区都不再排队。与此同时,越来越多消费者选择打开手机、点进App,开始一边喝咖啡一边补货家中的日常用品。这种变化并非偶然,它正悄悄改变全球零售行业的格局。尤其在后疫情时代形成的消费习惯推动下,线上杂货平台的发展速度远远超出了行业预期。而这股趋势并不仅限于食品领域,更开始辐射到eBay等平台上以非食品类商
- 深度优先在数据结构与算法中的独特作用
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据深度优先算法ai
深度优先在数据结构与算法中的独特作用关键词:深度优先搜索、数据结构、算法设计、图遍历、递归、迭代、问题求解摘要:深度优先搜索(DFS)是计算机科学中最重要的图遍历算法之一,其通过"尽可能深"的探索路径的策略,在树与图的结构分析、问题求解中展现出独特价值。本文从DFS的核心原理出发,系统解析其在数据结构中的实现方式、算法设计中的问题建模方法,结合数学模型分析时间空间复杂度,通过迷宫求解、强连通分量检
- Kafka 4.0.0集群部署
JavaGPT
Javakafkakafka分布式
Kafka4.0.0集群部署1.1关闭防火墙和selinux关闭防火墙systemctlstopfirewalld.servicesystemctldisablefirewalld.service关闭selinuxsetenforce0#(临时生效)sed-i's/^SELINUX=enforcing/SELINUX=disabled/'/etc/selinux/config#(永久生效)1.2检
- PostgreSQL DISTINCT 详解
沐知全栈开发
开发语言
PostgreSQLDISTINCT详解引言在数据库查询中,DISTINCT关键字是一个非常重要的工具,它可以帮助我们去除查询结果中的重复记录。PostgreSQL作为一款功能强大的开源关系型数据库管理系统,自然也支持DISTINCT关键字。本文将详细介绍PostgreSQL中DISTINCT的用法、注意事项以及性能优化。DISTINCT关键字的基本用法DISTINCT关键字用于选择从数据库表中检
- 大模型RAG高阶面试指南:第一章:RAG绪论
强化学习曾小健3
大模型RAG高阶面试指南人工智能深度学习
第一章:RAG绪论1.1RAG的定义、背景与核心思想检索增强生成(RetrievalAugmentedGeneration,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。它通过在生成过程中动态检索相关信息来增强大型语言模型的能力,从而提供更准确、更及时、更可靠的回答。RAG的核心思想是将"参数化知识"(存储在模型参数中的知识)与"非参数化知识"(存储在外部知识库中的知识)相结合,通过检
- 【LangChain】langchain.chains.history_aware_retriever.create_history_aware_retriever函数:创建结合对话历史进行语义检索链
彬彬侠
LangChainlangchain对话历史语义检索retriever
create_history_aware_retriever是LangChain库中的一个函数,位于langchain.chains.history_aware_retriever模块。它用于创建一个能够结合对话历史进行语义检索的链(chain),特别适合需要上下文感知的检索增强生成(RAG)场景。该函数通过语言模型(LLM)重构用户查询,结合历史对话上下文生成更精准的查询,从而从向量存储或其他检
- 如何使用EnsembleRetriever结合多个检索器的结果
weixin_43212959
windows人工智能microsoft
在信息检索领域,融合不同检索器的结果可以提升搜索结果的质量。EnsembleRetriever是一个支持将多个检索器的结果组合起来的工具。它通过复合互排名融合算法(ReciprocalRankFusion)重新排序各个检索器的结果,以实现更好的性能。技术背景介绍在搜索和信息检索中,"混合搜索"模式成为一种常见的做法。混合搜索通常结合稀疏检索器(如BM25)和密集检索器(如基于嵌入的相似性)。稀疏检
- You Only Look Once Unified, Real-Time Object Detection论文笔记
__Lo__
目标检测论文阅读深度学习
文章结构统一检测框架(UnifiledDetection)核心思想YOLO将目标检测视为一个端到端的回归问题,输入的图像经过SingleForwardPass,直接输出物体的信息(边界框的位置、边界框的置信度、类别概率);优势在于速度快,全局理解上下文,这里全局理解上下文的意思是识别物体和背景的关系,减少误检。网络设计网格划分(GridDivision)将图像划分为一个S×S的网格,文中S=7;共
- 华为OD机试_2025 B卷_运维日志排序(Python,100分)(附详细解题思路)
蜗牛的旷野
华为OD机试Python版华为odpython算法
题目描述运维工程师采集到某产品线网运行一天产生的日志n条,现需根据日志时间先后顺序对日志进行排序,日志时间格式为H:M:S.N。•H表示小时(0~23)•M表示分钟(0~59)•S表示秒(0~59)•N表示毫秒(0~999)时间可能并没有补全,也就是说,01:01:01.001也可能表示为1:1:1.1。输入描述第一行输入一个整数n表示日志条数,11,000,000条),如何优化?错误处理:如何检
- 基于MATLAB的车牌检测系统:传统图像处理与深度学习的创新融合
芯作者
D2:MATLAB设计matlab
车牌检测是智能交通系统中的关键技术,在停车场管理、违章抓拍等场景应用广泛。本文将介绍一种结合传统图像处理和深度学习的创新方法,在MATLAB中实现高精度车牌检测系统。一、创新技术路线传统方法在简单场景下高效,但复杂环境下鲁棒性不足;深度学习方法精度高但计算量大。我们创新性地融合二者:预处理阶段:使用传统图像处理快速定位候选区域验证阶段:采用轻量级CNN网络过滤误检区域后处理阶段:结合颜色空间分析增
- 输电线路巡检机器人PPT_常见的电力行业智能巡检方案.ppt
yannqing
输电线路巡检机器人PPT
常见的电力行业智能巡检方案金惠科技电力行业智能巡检方案背景需求解决方案应用领域汇报提纲电力行业智能巡检背景在智能电网和物联网高速发展的今天,电力设备巡检已不再满足于人工巡检的现状,它需要融合电力设备状态检(监)测技术,整合变电站、输电线路、电缆管廊、开闭所等各类在线检(监)测数据,以大数据平台为基础,以物联网为纽带,关联PMS系统及其它异构数据,进而形成电力设备状态检修辅助决策系统。电力设备巡检现
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号