- 几种AI模型在算法工作中的使用测评——Grok3,Deepseek,Chatgpt,Kimi,Claude(持续更新)
不断学习加努力
算法ai
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Grok3二、Deepseek-R1三、Chatgpt-4o四、Kimi五、Claude-3.5总结前言在工作中现在已经离不开这AI模型了。于是我单开一个博客,记录在使用过程中的这几种模型使用感受。大家的感受也可以在评论区畅所欲言,我会抽空放进博客中。当然ai编程主要用的还是cluade3.5.一、Grok3嘿嘿,最吸
- 机器幻觉产生的原因
人机与认知实验室
机器学习人工智能
机器幻觉是指模型生成的不符合现实的内容,比如图像生成中的错误或者不合理的输出。线性函数在神经网络中的作用通常是传递梯度,但如果每一层都是线性的,整个网络就相当于一个单层的线性模型,无法学习复杂的模式。所以如果只有线性层而没有非线性激活函数的话,网络将无法处理复杂任务。对于激活函数而言,常见的如ReLU、sigmoid、tanh。激活函数引入非线性,让网络有能力学习复杂的特征。但是如果没有合适的激活
- [LangChain 学习资源大集合]
qahaj
langchain学习人工智能python
在构建语言模型应用(LLM)时,LangChain是当前备受关注的框架之一。无论是初学者还是进阶用户,丰富的学习资源可以帮助我们高效掌握LangChain的核心概念、工具和最佳实践。这篇文章为大家整理了一些优秀的LangChain学习资源,包括官方教程、课程、短视频以及书籍。官方教程(Tutorials)1.LangChain官方教程LangChain官方提供了非常详细的初学者和进阶教程,推荐从这
- MCP模型上下文协议集锦
galileo2016
人工智能
MCP模型上下文协议简介MCP模型上下文协议(Model-Context-Protocol,MCP),能够实现大型语言模型(LLM)应用程序与本地或远程资源之间的安全、可控的交互。2024年11月底,Anthropic公司发布了MCP开放标准,实现大型语言模型(LLM)应用程序与外部数据源和工具之间的无缝集成。官方网站:https://modelcontextprotocol.io项目仓库:Mod
- Open WebUI:开源AI交互平台的全面解析
目录核心功能安装指南Linux/macOSWindows进阶特性管理与安全生态系统集成持续更新核心功能️交互体验类ChatGPT界面:提供直观的聊天界面设计跨平台响应式设计:完美适配桌面/移动端即时响应:毫秒级响应速度富文本支持:代码语法高亮完整Markdown/LaTeX渲染语音输入支持(支持静音自动提交)模型管理多模型切换:支持不同LLM模型即时切换GGUF模型创建:支持直接上传/从Huggi
- 实战:基于Pandas的房价数据分析全流程深度解析(附高阶技巧与数学推导)(十二)
WHCIS
Pandaspandas数据分析python
一、项目深度解析框架1.1分析维度全景图数据加载元数据分析数据清洗特征工程多维分析模型准备自动化报告1.2高阶分析工具链数据清洗:Missingno高级可视化、Optuna自动超参优化特征工程:TsFresh时序特征生成、FeatureTools自动化特征衍生可视化:Plotly动态交互、Altair声明式语法报告:JupyterNotebook魔法命令、Voila仪表板二、数据加载的工程级优化2
- MySQL × 向量数据库:大模型时代的黄金组合实战指南
mysql人工智能
一、大模型时代的数据存储革命1.1传统架构的局限性--传统商品表结构CREATETABLEproducts(idINTPRIMARYKEY,titleVARCHAR(255),descriptionTEXT,category_idINT);--典型关键词搜索SELECT*FROMproductsWHEREtitleLIKE'%智能手机%'ORdescriptionLIKE'%旗舰机型%';痛点分析
- 大模型时代的软件架构设计
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
引言当今世界,人工智能(AI)技术正以惊人的速度发展,其中大模型(LargeModels)的崛起尤为引人注目。大模型,也被称为深度学习模型,因其庞大的参数规模和强大的数据处理能力,成为推动AI技术前进的重要力量。随着大模型的广泛应用,软件架构设计面临着前所未有的挑战和机遇。大模型时代的软件架构设计,不仅需要解决传统软件架构所面对的问题,如性能、可靠性和可扩展性等,还需要应对大模型带来的新挑战,如计
- 大模型技术在电商平台商品评价分析中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型技术在电商平台商品评价分析中的应用关键词:大模型技术电商平台商品评价分析情感分析商品推荐Transformer模型BERT模型摘要:本文详细探讨了大模型技术在电商平台商品评价分析中的应用。首先,我们介绍了大模型技术的基本概念、发展背景及其在商品评价分析中的应用前景。随后,我们阐述了电商平台商品评价分析的基本概念、挑战及目标指标。接着,本文重点分析了大模型技术在情感分析和商品推荐中的具体应用,
- JS Dom元素的获取 事件 this
jingerh126
Web元素事件
一、DOM(文档对象模型)元素获取:1.html/head/body元素的获取console.log(document);//获取的是html元素console.log(document.documentElement);//获取的是html元素document.getElementsByTagName("html")[0];//获取的是html元素console.log(document.hea
- DeepSeek服务繁忙的一种方案-硅基流动免费增送2000 万 Tokens
PeterClerk
AIGCDeepSeek硅基流动邀请
DeePseek服务繁忙的一种解决方法:硅基流动模型广场,还有SiliconCloud首发上线基于华为云昇腾云服务的DeepSeek-V3,DeepSeek-R1支持API调用邀请链接:https://cloud.siliconflow.cn/i/B3EvPWGF邀请码:B3EvPWGF
- 大语言模型LLM原理篇_图解大模型从用户输入prompt到llm输出答案的流程原理
喝不喝奶茶丫
prompt人工智能自然语言处理语言模型javascript大模型LLM
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 开发基于提示工程的大语言模型(LLM)应用——学习笔记
ricky_fan
人工智能python
本文是学习笔记。学习通过提示工程与大语言模型进行程序化的交互。将从最基本的开始,比如使用哪些模型,以及如何向它们发送提示词并查看响应。将逐步构建更复杂的提示词,并学习LangChain为我们提供的、用于与大语言模型交互的丰富工具。Langchain链核心是运行时(runnable),它们能以多种方式组合的为工作流。如何创建LangChain链 fromlangchain_nvidia_ai_end
- 计算机视觉与机器学习之文档解析与向量化技术加速多模态大模型训练与应用——文件向量化大模型!
知世不是芝士
计算机视觉人工智能大语言模型ai大模型多模态大模型机器学习LLM
目录前言1、TextIn文档解析技术1.1、文档解析技术1.2、目前存在的问题1.2.1、不规则的文档信息示例1.3、合合信息的文档解析1.3.1、合合信息的TextIn文档解析技术架构1.3.2、版面分析关键技术Layout-engine1.3.3、文档树提取关键技术Catalog-engine1.3.4、双栏1.3.5、非对称双栏1.3.6、双栏+表格1.3.7、无线表格1.3.8、合并单元格
- 《AI大模型开发笔记》——提示词工程
Richard Chijq
AI大模型开发笔记前端服务器运维
1.什么是提示工程提示工程(PromptEngineering),也被称为上下文学习,是指通过精心设计的提示技术来引导LLM行为,而无需更改模型权重。其目标是使模型输出与给定任务的人类意图一致。提示工程帮助用户控制语言模型输出,生成适合的特定需求。提示调整提供了对模型行为的直观控制,但对提示的确切措辞和设计敏感,因此需要精心制定的准则以实现期望的结果。2.提示工程的原则2.1.给模型清晰指令:
- [论文笔记] LLM大模型剪枝篇——2、剪枝总体方案
心心喵
论文笔记剪枝算法机器学习
https://github.com/sramshetty/ShortGPT/tree/mainMy剪枝方案(暂定):剪枝目标:1.5B—>100~600M剪枝方法:层粒度剪枝1、基于BI分数选择P%的冗余层,P=60~802、对前N%冗余层,直接删除fulllayer。N=20(N:剪枝崩溃临界点,LLaMA2在45%,Mistral-7B在35%,Qwen在20%,Phi-2在25%)对后(P
- C#集合类(数据结构)
FreedomRoad~
C#.NET
一、选择数据结构1)线性容器List数组/Stack/Dequeue按需求模型选择即可,LinkedList是双向链表增删修改快.需要有序数组SortList线性排序容器都可以;如果既需要查找快又需要频繁修改那么可以用List记录索引,用LinkedList存储。2)二叉树类型容器SortedDictionary可以提供二叉树类型插入删除查找都比较折中的键值对容器。SortedSet一个集合值类型
- TCP网络编程库——Muduo库
青春:一叶知秋
网络tcp/ip服务器
目录1,Muduo库的说明2,Muduo库的主要组件3,Muduo常用的类接口4,Muduo库的代码运用5、Muduo库的工作流程6、特点与优势1,Muduo库的说明Muduo库是一个基于非阻塞IO和IO多路复用的C++高并发TCP网络编程库,它基于Reactor模式实现,并支持多线程并发处理的网络库,使用的线程模型是oneloopperthread。注意:Reactor模式和oneloopper
- 数据库必知必会系列:数据库分片与分布式事务
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
文章目录1.背景介绍分库分表分片集群分布式事务数据迁移2.核心概念与联系主从复制活动复制CAP原则BASE理论3.核心算法原理和具体操作步骤以及数学模型公式详细讲解分库分表水平分表垂直分库分片集群垂直拆分水平切分垂直切分水平拆分根据主键范围根据业务字段划分分布式事务两阶段提交协议三阶段提交协议可靠消息最终一致性ACID四要素4.具体代码实例和详细解释说明MyCat配置文件server.xml文件s
- GitHub每日最火火火项目(2.28)
FutureUniant
github日推github人工智能计算机视觉音视频ai
olmocr项目介绍:olmocr是由allenai开发的一款用于将PDF文件线性化,以适配大语言模型(LLM)数据集和训练的工具包。在大语言模型的训练过程中,数据的格式和预处理极为关键。PDF文件作为常见的数据来源,其内部复杂的排版和结构使得其中的文本信息难以直接被模型有效利用。olmocr通过一系列的技术和算法,对PDF文件进行处理,将其中的文本内容按照合适的顺序和格式提取出来,转化为线性的、
- 深入理解PyTorch模型训练所需的数据集
mosquito_lover1
pytorch人工智能python
在PyTorch中,模型训练的核心是数据集(Dataset)。数据集是模型训练的基础,它提供了模型训练所需的所有输入数据和对应的标签。理解数据集的结构、加载方式以及如何预处理数据是成功训练模型的关键。以下是对PyTorch模型训练所需数据集的深入解析:1.数据集的基本概念数据集:数据集是模型训练的基础,通常由输入数据(如图像、文本、音频等)和对应的标签(目标值)组成。样本(Sample):数据集中
- Amazon SageMaker 批量转换中的 JSON 处理技巧
t0_54coder
json个人开发
在使用AmazonSageMaker进行机器学习模型的批量转换时,我们经常会遇到一些配置和数据格式的问题。今天我们来讨论一个常见的困扰:如何处理在MultiRecord批量策略下JSON数据的解析错误。背景介绍AmazonSageMaker提供了强大的批量转换功能,允许我们对大量数据进行推理。这在处理大规模数据集时非常有用。然而,当我们尝试将批量策略从SingleRecord切换到MultiRec
- GitHub 星标10W+的大模型书籍:《轻松入门大模型应用开发:GPT-4 和 ChatGPT 实战指南》,25年一书通关LLM大模型
程序员丸子
人工智能语言模型自然语言处理大模型AILLM大模型应用
当下大模型这么火,还有人很多人想加入进来,但是不知道怎么去学习,那么今天我就给大家分享一本适合所有人的一本神仙级入门大模型的书籍,小白也能学会。它是由奥利维耶·卡埃朗和玛丽-艾丽斯·布莱特合著的一本《大模型应用开发极简入门:基于GPT-4和ChatGPT》,为初学者提供一份清晰、全面的“可用知识”,帮助读者快速了解GPT-4和ChatGPT的工作原理及优势。此书使用流行的Python编程语言来构建
- 如何使用Anyscale平台运行、微调和扩展大语言模型(LLMs)
eahba
语言模型人工智能自然语言处理python
Anyscale是一个功能强大的平台,主要用于运行、微调和扩展大语言模型(LLMs),并且通过生产就绪的API提供成本效益的调用服务。AnyscaleEndpoints提供了多种开源模型,适合不同的应用场景。技术背景介绍在处理大规模的自然语言处理任务时,我们常常需要一个可靠且经济高效的解决方案来运行和管理LLMs。Anyscale提供了一个强大的接口,能够简化这一过程。结合LangChain,我们
- 【deepseek】deepseek-r1本地部署-第三步:下载模型
Evenurs
aideepseek
一、背景建议的模型有1.5B、8B、32B三种。其中1.5B轻量级,适合无独显的环境;8B适合带独显的环境;32B的超大杯适合专业开发环境,其推算准度比gpt弱10%。二、操作1、LMStudio开发模式切换模式名字PowerUser2、下载模型模型名字DeepSeek-R1-Distill-Llama-8B-GGUF3、下载完成三、总结按需选择合适的bit的模型,否则会跑不动。
- 模型和视图变换 Model and View Transform
你一身傲骨怎能输
图形引擎底层基本知识专栏模型和视图变换
在计算机图形学中,模型和视图变换是渲染管线中的重要步骤。它们的主要目的是将三维模型的坐标转换到适合于显示的二维坐标系统中。以下是对模型变换和视图变换的详细解释,以及它们在渲染过程中的作用。1.模型变换(ModelTransformation)模型变换是将模型的局部坐标系(模型坐标)转换到世界坐标系的过程。这个过程通常涉及以下几种变换:平移(Translation):移动模型到世界空间中的特定位置。
- 手机秒变AI办公神器!腾讯元宝+DeepSeek满血版,5分钟搞定PPT和项目汇报——你的效率翻倍指南
a小胡哦
人工智能powerpointDeepseek
为什么选择腾讯元宝?DeepSeek官方服务器常卡顿?腾讯元宝作为官方合作平台,提供稳定版DeepSeek-R1模型,支持联网搜索、文件解析、多模态交互,手机端操作更丝滑一、快速上手指南1.下载安装(3秒完成)应用商店搜索“腾讯元宝”→下载安装→选择微信/QQ/手机号登录2.切换至DeepSeek模式(1步到位)进入对话界面→点击顶部“Hunyuan混元”→切换至“DeepSeek-R1”→开启“
- 利用OllamaLLM模型实现多模态文本生成
bavDHAUO
python
利用OllamaLLM模型实现多模态文本生成在这篇文章中,我们将介绍如何使用OllamaLLM模型实现多模态文本生成,包括文本和图像输入的处理。我们将详细解析核心原理,提供代码示例,并分析应用场景。希望这篇文章能帮助你更好地理解和使用OllamaLLM模型。技术背景介绍多模态模型是指能够处理和生成多种类型的数据,如文本、图像、音频等。在自然语言处理领域,结合图像和文本的多模态模型越来越受到关注。O
- YOLOv9与YOLOv8创新点差异概述:
奔强的程序
YOLO
架构改进:YOLOv8:引入了新的骨干网络,检测头,以及损失函数,旨在提高性能和灵活性。YOLOv9:可能在架构上进行了进一步的优化,比如改进了特征提取的方式、增强了多尺度检测能力等。这些改进有助于模型在处理不同大小和形状的目标时更加有效。梯度信息利用:YOLOv9的一个显著创新点是主打“可编程梯度信息来学习任何内容”。这意味着模型在训练过程中可能更加关注梯度信息的质量和流向,从而更有效地进行参数
- DeepSeek入门:安装与配置
梦落青云
deepseek
3.1系统要求硬件要求DeepSeek的硬件要求因模型版本而异,以下是不同版本的硬件要求:DeepSeek-R1-1.5B:CPU:最低4核(推荐Intel/AMD多核处理器)内存:8GB+硬盘:3GB+存储空间(模型文件约1.5-2GB)显卡:非必需(纯CPU推理),若GPU加速可选4GB+显存(如GTX1650)DeepSeek-R1-7B:CPU:8核以上(推荐现代多核CPU)内存:16GB
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb