基于CIFAR10数据集的识别网络应用(pytorch)

 学习pytorch的过程中搞了一个小小的应用,和大家分享分享。

数据集

数据集:CIFAR10

        该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。
基于CIFAR10数据集的识别网络应用(pytorch)_第1张图片

代码

基于CIFAR10数据集的识别网络应用(pytorch)_第2张图片

model.py

from torch import nn
from torchvision import transforms
import torch as t
import torchvision
from torch.utils.data import DataLoader

device = t.device("cuda:0")  #用GPU训练模型

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.sque = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.BatchNorm2d(32),
            nn.Conv2d(32,64,5,1,2),
            nn.BatchNorm2d(64),
            nn.Conv2d(64,128,5,1,2),
            nn.BatchNorm2d(128),
            nn.MaxPool2d(2),
            nn.Conv2d(128,512, 5, 1, 2),
            nn.BatchNorm2d(512),
            nn.MaxPool2d(2),
            nn.Conv2d(512,1024, 5, 1, 2),
            nn.BatchNorm2d(1024),
            nn.MaxPool2d(2),
            nn.AvgPool2d(2),
            nn.Flatten(),
            nn.ReLU(),
            nn.Linear(1024*2*2,1024*2),
            nn.BatchNorm1d(1024*2),
            nn.ReLU(),
            nn.Linear(1024 * 2, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Linear(512,10)
        )
    def forward(self,x):
        x = self.sque(x)
        return x

#下载训练集,测试集
train_data = torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)

train_data_size = len(train_data)
test_data_size = len(test_data)

print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

#加载训练集,测试集
train_dataloader = DataLoader(train_data,batch_size=32)
test_dataloader = DataLoader(test_data,batch_size=32)

net = Net()
net = net.to(device)

loss_fn = nn.CrossEntropyLoss()      #损失函数采用交叉熵函数
loss_fn = loss_fn.to(device)

learning_rate = 1e-2
optimizer = t.optim.SGD(net.parameters(),lr=learning_rate)  #采用随机梯度下降训练

total_train_step = 0
total_test_step = 0
epoch = 20

for i in range(epoch):
    print("第{}轮训练开始:".format(i+1))
    #开始训练
    net.train()
    for data in train_dataloader:
        imgs,targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = net(imgs)
        loss = loss_fn(outputs,targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{}, Loss:{}".format(total_train_step,loss.item()))

    #评估模型
    net.eval()
    total_test_loss = 0
    total_accuracy = 0
    with t.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = net(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集的Loss:{}".format(total_test_loss))  #这里用的是整体loss所以会很大
    print("整体测试集的正确率:{}".format(total_accuracy/test_data_size))

    if i > 12:
        t.save(net,"test3_CIFAR10_{}.pth".format(i+1))
        print("模型已保存")

这里记住训练最好的模型,后面好采用。
基于CIFAR10数据集的识别网络应用(pytorch)_第3张图片
基于CIFAR10数据集的识别网络应用(pytorch)_第4张图片

test.py

from torch import nn
from torchvision import transforms
import torch as t
import torchvision
from torch.utils.data import DataLoader
from PIL import Image

image_path = "../imgs/cat.jpg"        #cat.jpg是我自己在网上找的图片
lei = image_path.split(".")[2].split("/")[2]    #把cat.jpg中的cat提取出来作为后续实际结果
image = Image.open(image_path)
print(image)

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])
                                            #把图片转为32*32大小的(数据集中的图片用的是32*32的,应匹配)
image = transform(image)
image = t.reshape(image,(1,3,32,32))
print(image.shape)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.sque = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.BatchNorm2d(32),
            nn.Conv2d(32,64,5,1,2),
            nn.BatchNorm2d(64),
            nn.Conv2d(64,128,5,1,2),
            nn.BatchNorm2d(128),
            nn.MaxPool2d(2),
            nn.Conv2d(128,512, 5, 1, 2),
            nn.BatchNorm2d(512),
            nn.MaxPool2d(2),
            nn.Conv2d(512,1024, 5, 1, 2),
            nn.BatchNorm2d(1024),
            nn.MaxPool2d(2),
            nn.AvgPool2d(2),
            nn.Flatten(),
            nn.ReLU(),
            nn.Linear(1024*2*2,1024*2),
            nn.BatchNorm1d(1024*2),
            nn.ReLU(),
            nn.Linear(1024 * 2, 1024),
            nn.BatchNorm1d(1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Linear(512,10)
        )
    def forward(self,x):
        x = self.sque(x)
        return x



model = t.load("test3_CIFAR10_18.pth",map_location=t.device('cpu'))  #导入之前下好的模型(用GPU训练的模型要转为CPU的,才能预测)
print(model)
model.eval()
with t.no_grad():
    output = model(image)

print(output)
print(output.argmax(1))

icon = {0:"airplane",
        1:"automobile",
        2:"bird",
        3:"cat",
        4:"deer",
        5:"dog",
        6:"frog",
        7:"horse",
        8:"ship",
        9:"truck"}

print(output.argmax(1).item())

for key,value in icon.items():
    if output.argmax(1).item() == key:
        print("预测类型为:" + value)
print("实际类型为:" + lei)

结果:
基于CIFAR10数据集的识别网络应用(pytorch)_第5张图片
基于CIFAR10数据集的识别网络应用(pytorch)_第6张图片

你可能感兴趣的:(深度学习,pytorch,深度学习,人工智能)