Codeforces C. Yet Another Counting Problem (数学 / 思维) (Round 86 Rated for Div.2)

传送门

题意: 问你 l 到 r 这个区间内有多少个数组满足 ((x % a) % b) ≠ ((x % b) % a),总共t组测试,每组测试询问q次l到r的答案。
Codeforces C. Yet Another Counting Problem (数学 / 思维) (Round 86 Rated for Div.2)_第1张图片

思路:

  • 设x = (m * a) + c = (n * b) + d ,若((x % a) % b) = ((x % b) % a),那么就意味着c和d相等。
  • 又因为 m 和 n 都是整数,所以当x = m * lcm(a,b)+ c,(c就是max(a, b) - 1)。求出不符合的数,然后用总数减去它就是答案了。

代码实现:

#include
#define endl '\n'
#define null NULL
#define ll long long
#define int long long
#define pii pair
#define lowbit(x) (x &(-x))
#define ls(x) x<<1
#define rs(x) (x<<1+1)
#define me(ar) memset(ar, 0, sizeof ar)
#define mem(ar,num) memset(ar, num, sizeof ar)
#define rp(i, n) for(int i = 0, i < n; i ++)
#define rep(i, a, n) for(int i = a; i <= n; i ++)
#define pre(i, n, a) for(int i = n; i >= a; i --)
#define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0);
const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
using namespace std;
const int  inf = 0x7fffffff;
const double PI = acos(-1.0);
const double eps = 1e-6;
const ll   mod = 1e9 + 7;
const int  N = 2e5 + 5;

int t, a, b, q, x, y;
int maxx, lc, _x, _y, tmp;
vector<int> ans;

signed main()
{
    IOS;

    cin >> t;
    while(t --){
        cin >> a >> b >> q;
        ans.clear();
        maxx = max(a, b);
        lc = (a * b) / __gcd(a, b); //求得a,b的最小公倍数
        while(q --){
            cin >> x >> y;
            _x = (x - 1) / lc * maxx; // 1 ~ (x-1)中不符合的个数
            tmp = (x - 1) % lc;
            if(tmp >= maxx) _x += maxx;
            else _x += tmp + 1;
            _y = y / lc * maxx; //1 ~ y中不符合的个数
            tmp = y % lc;
            if(tmp >= maxx) _y += maxx;
			else _y += tmp + 1;

			ans.push_back((y - x + 1) - (_y - _x));//可选总数减去x ~ y中不满足的数
        }
        for(auto it : ans) cout << it << " ";
        cout << endl;
    }

    return 0;
}

你可能感兴趣的:(比赛&训练,数学)