前言
多组学文章经常出现非连续变量的热图或者叫格子图。举几个例子:
以上两个图都来自2021.09
的一篇Cell
,标题是Proteogenomic characterization of pancreatic ductal adenocarcinoma
。今天就不细讲这两幅图了。这种图给我们展示离散/分类变量的差异提供了一个思路。今天就简单介绍几种常用的画这种图的方法。
22
常用方法
构建一个分类变量组成的示例数据。
library(ggplot2)
library(tidyverse)
library(reshape2)
library(RColorBrewer)
clinical.df=data.frame(
patient=paste("P",seq(1:15),sep = ""),
age=sample(c("young","old"),15,replace = T),
gender=sample(c("male","female"),15,replace = T),
symptom=sample(c("mild","moderate","severe"),15,replace = T),
RNAseq=sample(c("yes","no"),15,replace = T),
WES=sample(c("yes","no"),15,replace = T)
)
head(clinical.df)
> head(clinical.df)
patient age gender symptom RNAseq WES
1 P1 old female moderate yes no
2 P2 old male moderate yes no
3 P3 old male moderate yes yes
4 P4 young female severe yes yes
5 P5 old female moderate no no
6 P6 young male moderate no no
# 长宽转换 已备作图
clinical.df2=melt(clinical.df,id="patient")
head(clinical.df2)
> head(clinical.df2)
patient variable value
1 P1 age old
2 P2 age old
3 P3 age old
4 P4 age young
5 P5 age old
6 P6 age young
geom_tile
Color<-brewer.pal(9, "Set3") # 设置颜色
# 设置因子顺序
clinical.df2$patient=factor(clinical.df2$patient,levels = paste("P",seq(1:15),sep = ""))
clinical.df2$variable=factor(clinical.df2$variable,levels = c("WES","RNAseq","symptom","gender","age"))
ggplot(clinical.df2, aes(x = patient, y = variable, fill = value)) +
geom_tile(color = "white", size = 0.25) +
scale_fill_manual(name = "Category",
#labels = names(sort_table),
values = Color)+
theme(#panel.border = element_rect(fill=NA,size = 2),
panel.background = element_blank(),
plot.title = element_text(size = rel(1.2)),
axis.title = element_blank(),
axis.ticks = element_blank(),
legend.title = element_blank(),
legend.position = "right")
ggwaffle
devtools::install_github("liamgilbey/ggwaffle") # 下载包
library(ggwaffle)
ggplot(clinical.df2, aes(patient, variable, fill = value)) +
geom_waffle()+
scale_fill_manual(name = "Category",
#labels = names(sort_table),
values = Color)+
theme(#panel.border = element_rect(fill=NA,size = 2),
panel.background = element_blank(),
plot.title = element_text(size = rel(1.2)),
axis.title = element_blank(),
axis.ticks = element_blank(),
legend.title = element_blank(),
legend.position = "right")
和geom_tile
异曲同工。
ComplexHeatmap
ComplexHeatmap
应该是最能还原本文前言图的包,不过我这里暂时还没时间搞定,后续发复现版本的代码。
row.names(clinical.df) <- clinical.df[,1]
clinical.df <- clinical.df[,-1]
clinical.df3 <- data.frame(t(clinical.df))
# 上面的代码为了将数据转为热图矩阵
library(ComplexHeatmap)
Heatmap(clinical.df3)
未经雕饰的图确实不是很美观。
总结
以上就是我所知的几种常用的画离散变量的热图的方法。如果大家有更巧妙的想法,欢迎在后台留言互相学习交流。
参考
R绘图(2): 离散/分类变量如何画热图/方块图 - (jianshu.com)
往期
- 跟着Nature学作图 | 配对哑铃图+分组拟合曲线+分类变量热图
- (免费教程+代码领取)|跟着Cell学作图系列合集
- 跟着Nat Commun学作图 | 1.批量箱线图+散点+差异分析
- 跟着Nat Commun学作图 | 2.时间线图
- 跟着Nat Commun学作图 | 3.物种丰度堆积柱状图
- 跟着Nat Commun学作图 | 4.配对箱线图+差异分析