《从0到1学习Flink》—— Flink JobManager 高可用性配置

转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2019/01/13/Flink-JobManager-High-availability/ , 未经允许禁止转载。

前言

之前在 《从0到1学习Flink》—— Flink 配置文件详解 讲过 Flink 的配置,但是后面陆续有人来问我一些配置相关的东西,在加上我现在对 Flink 也更熟悉了些,这里我就再写下 Flink JobManager 的配置相关信息。

在 《从0到1学习Flink》—— Apache Flink 介绍 一文中介绍过了 Flink Job 的运行架构图:

JobManager 协调每个 Flink 作业的部署。它负责调度和资源管理。

默认情况下,每个 Flink 集群都有一个 JobManager 实例。这会产生单点故障(SPOF):如果 JobManager 崩溃,则无法提交新作业且运行中的作业也会失败。

如果我们使用 JobManager 高可用模式,可以避免这个问题。您可以为 standalone 集群和 YARN 集群配置高可用模式。

standalone 集群高可用性

standalone 集群的 JobManager 高可用性的概念是,任何时候都有一个主 JobManager 和 多个备 JobManagers,以便在主节点失败时有新的 JobNamager 接管集群。这样就保证了没有单点故障,一旦备 JobManager 接管集群,作业就可以依旧正常运行。主备 JobManager 实例之间没有明确的区别。每个 JobManager 都可以充当主备节点。

例如,请考虑以下三个 JobManager 实例的设置:

如何配置

要启用 JobManager 高可用性功能,您必须将高可用性模式设置为 zookeeper,配置 ZooKeeper quorum,将所有 JobManagers 主机及其 Web UI 端口写入配置文件。

Flink 利用 ZooKeeper 在所有正在运行的 JobManager 实例之间进行分布式协调。ZooKeeper 是独立于 Flink 的服务,通过 leader 选举和轻量级一致性状态存储提供高可靠的分布式协调服务。Flink 包含用于 Bootstrap ZooKeeper 安装的脚本。
他在我们的 Flink 安装路径下面 /conf/zoo.cfg 。

Masters 文件

要启动 HA 集群,请在以下位置配置 Masters 文件 conf/masters:

localhost:8081
xxx.xxx.xxx.xxx:8081

masters 文件包含启动 JobManagers 的所有主机以及 Web 用户界面绑定的端口,上面一行写一个。

默认情况下,job manager 选一个随机端口作为进程通信端口。您可以通过 high-availability.jobmanager.port 更改此设置。此配置接受单个端口(例如 50010),范围(50000-50025)或两者的组合(50010,50011,50020-50025,50050-50075)。

配置文件 (flink-conf.yaml)

要启动 HA 集群,请将以下配置键添加到 conf/flink-conf.yaml:

高可用性模式(必需):在 conf/flink-conf.yaml中,必须将高可用性模式设置为 zookeeper,以打开高可用模式。

high-availability: zookeeper

ZooKeeper quorum(必需):ZooKeeper quorum 是一组 ZooKeeper 服务器,它提供分布式协调服务。

high-availability.zookeeper.quorum: ip1:2181 [,...],ip2:2181

每个 ip:port 都是一个 ZooKeeper 服务器的 ip 及其端口,Flink 可以通过指定的地址和端口访问 zookeeper。

另外就是高可用存储目录,JobManager 元数据保存在文件系统 storageDir 中,在 ZooKeeper 中仅保存了指向此状态的指针, 推荐这个目录是 HDFS, S3, Ceph, nfs 等,该 storageDir 中保存了 JobManager 恢复状态需要的所有元数据。

high-availability.storageDir: hdfs:///flink/ha/

配置 master 文件和 ZooKeeper 配置后,您可以使用提供的集群启动脚本。他们将启动 HA 集群。请注意,启动 Flink HA 集群前,必须启动 Zookeeper 集群,并确保为要启动的每个 HA 集群配置单独的 ZooKeeper 根路径。

示例

具有 2 个 JobManagers 的 Standalone 集群:

1、在 conf/flink-conf.yaml 中配置高可用模式和 Zookeeper :

high-availability: zookeeper
high-availability.zookeeper.quorum: localhost:2181
high-availability.storageDir: hdfs:///flink/recovery

2、在 conf/masters 中 配置 masters:

localhost:8081
localhost:8082

3、在 conf/zoo.cfg 中配置 Zookeeper 服务:

server.0=localhost:2888:3888

4、启动 ZooKeeper 集群:

$ bin/start-zookeeper-quorum.sh
Starting zookeeper daemon on host localhost.

5、启动一个 Flink HA 集群:

$ bin/start-cluster.sh
Starting HA cluster with 2 masters and 1 peers in ZooKeeper quorum.
Starting jobmanager daemon on host localhost.
Starting jobmanager daemon on host localhost.
Starting taskmanager daemon on host localhost.

6、停止 ZooKeeper 和集群:

$ bin/stop-cluster.sh
Stopping taskmanager daemon (pid: 7647) on localhost.
Stopping jobmanager daemon (pid: 7495) on host localhost.
Stopping jobmanager daemon (pid: 7349) on host localhost.

$ bin/stop-zookeeper-quorum.sh
Stopping zookeeper daemon (pid: 7101) on host localhost.

上面的执行脚本如下图可见:

YARN 集群高可用性

当运行高可用的 YARN 集群时,我们不会运行多个 JobManager 实例,而只会运行一个,该 JobManager 实例失败时,YARN 会将其重新启动。Yarn 的具体行为取决于您使用的 YARN 版本。

如何配置?

Application Master 最大重试次数 (yarn-site.xml)

在 YARN 配置文件 yarn-site.xml 中,需要配置 application master 的最大重试次数:


  yarn.resourcemanager.am.max-attempts
  4
  
    The maximum number of application master execution attempts.
  

当前 YARN 版本的默认值为 2(表示允许单个 JobManager 失败两次)。

Application Attempts (flink-conf.yaml)

除了上面可以配置最大重试次数外,你还可以在 flink-conf.yaml 配置如下:

yarn.application-attempts: 10

这意味着在如果程序启动失败,YARN 会再重试 9 次(9 次重试 + 1 次启动),如果启动 10 次作业还失败,yarn 才会将该任务的状态置为失败。如果因为节点硬件故障或重启,NodeManager 重新同步等操作,需要 YARN 继续尝试启动应用。这些重启尝试不计入 yarn.application-attempts 个数中。

容器关闭行为

  • YARN 2.3.0 < 版本 < 2.4.0. 如果 application master 进程失败,则所有的 container 都会重启。
  • YARN 2.4.0 < 版本 < 2.6.0. TaskManager container 在 application master 故障期间,会继续工作。这具有以下优点:作业恢复时间更快,且缩短所有 task manager 启动时申请资源的时间。
  • YARN 2.6.0 <= version: 将尝试失败有效性间隔设置为 Flink 的 Akka 超时值。尝试失败有效性间隔表示只有在系统在一个间隔期间看到最大应用程序尝试次数后才会终止应用程序。这避免了持久的工作会耗尽它的应用程序尝试。

示例:高可用的 YARN Session

1、配置 HA 模式和 Zookeeper 集群 在 conf/flink-conf.yaml:

high-availability: zookeeper
high-availability.zookeeper.quorum: localhost:2181
yarn.application-attempts: 10

2、配置 ZooKeeper 服务 在 conf/zoo.cfg:

server.0=localhost:2888:3888

3、启动 Zookeeper 集群:

$ bin/start-zookeeper-quorum.sh
Starting zookeeper daemon on host localhost.

4、启动 HA 集群:

$ bin/yarn-session.sh -n 2

总结

本篇文章再次写了下 Flink JobManager 的高可用配置,如何在 standalone 集群和 YARN 集群中配置高可用。

关注我

微信公众号:zhisheng

另外我自己整理了些 Flink 的学习资料,目前已经全部放到微信公众号了。你可以加我的微信:zhisheng_tian,然后回复关键字:Flink 即可无条件获取到。

更多私密资料请加入知识星球!

Github 代码仓库

https://github.com/zhisheng17/flink-learning/

以后这个项目的所有代码都将放在这个仓库里,包含了自己学习 flink 的一些 demo 和博客

相关文章

1、《从0到1学习Flink》—— Apache Flink 介绍

2、《从0到1学习Flink》—— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门

3、《从0到1学习Flink》—— Flink 配置文件详解

4、《从0到1学习Flink》—— Data Source 介绍

5、《从0到1学习Flink》—— 如何自定义 Data Source ?

6、《从0到1学习Flink》—— Data Sink 介绍

7、《从0到1学习Flink》—— 如何自定义 Data Sink ?

8、《从0到1学习Flink》—— Flink Data transformation(转换)

9、《从0到1学习Flink》—— 介绍Flink中的Stream Windows

10、《从0到1学习Flink》—— Flink 中的几种 Time 详解

11、《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch

12、《从0到1学习Flink》—— Flink 项目如何运行?

13、《从0到1学习Flink》—— Flink 写入数据到 Kafka

14、《从0到1学习Flink》—— Flink JobManager 高可用性配置

15、《从0到1学习Flink》—— Flink parallelism 和 Slot 介绍

16、《从0到1学习Flink》—— Flink 读取 Kafka 数据批量写入到 MySQL

你可能感兴趣的:(java,大数据,流式计算,Flink,从0到1学习Flink,Flink,大数据,Java)