通过遍历的结果来还原二叉树,但要两种遍历结果才能还原一个二叉树,比如:
先序遍历+中序遍历 还原二叉树
后序遍历+中序遍历 还原二叉树
只有这两个模式才能还原,而先序和后序是不可以还原的。
原理:
直接看代码:
//pre和in是两个数组,是用来存放你要输入的先序遍历和中序遍历的结果
//pre[100]= "abdecfg"
//in[100] = "debafcg"
//len是结点个数,也就是数组长度
struct BinTree_node *pre_in_CreateBinTree(char *pre, char *in, int len)
{
struct BinTree_node *tree;
if(len == 0)
return NULL;
char ch = pre[0];//得到先序遍历的第一个结点
int index = 0;
while(in[index] != ch)
index++;//记录先序遍历的第一个结点在in中寻找,找到下标
tree = (struct BinTree_node *)malloc(sizeof(struct BinTree_node));//开辟结点内存空间
tree->elem = ch;//数据赋值为先序遍历中的第一个
tree->ltree = pre_in_CreateBinTree(pre+1, in, index);//递归创建左子树
tree->rtree = pre_in_CreateBinTree(pre+index+1, in+index+1, len-index-1);//递归创建右子树
//括号里面的参数是缩小范围,只是左子树和右子树的区域
return tree;
}
struct BinTree_node *in_post_CreateBinTree(char *in, char *post, int len)
{
struct BinTree_node *tree;
if(len == 0)
return NULL;
char ch = post[len-1];//后序遍历的最后一个
int index = 0;
while(in[index] != ch)
index++;//在中序中寻找
tree = (struct BinTree_node *)malloc(sizeof(struct BinTree_node));
tree->elem = ch;//初始化数据域
tree->ltree = in_post_CreateBinTree(in, post, index);//创建左子树
tree->rtree = in_post_CreateBinTree(in+index+1, post+index, len-index-1);//创建右子树
return tree;
}
#include
#include
struct BinTree_node
{
unsigned char elem;
struct BinTree_node *ltree, *rtree;
};
void pre_order(struct BinTree_node *tree);//先序遍历
void in_order(struct BinTree_node *tree);//中序遍历
void pos_order(struct BinTree_node *tree);//后序遍历
struct BinTree_node *create_bintree(void);//创建二叉树,前面讲过
struct BinTree_node *pre_in_CreateBinTree(char *pre, char *in, int len);
struct BinTree_node *in_post_CreateBinTree(char *in, char *post, int len);
int main(void)
{
struct BinTree_node *mytree;
char pre[100], in[100], post[100];
int choose, n;
printf("1.选择先序和中序:\n");
printf("2. 选择中序和后序:\n");
scanf("%d", &choose);
switch(choose)
{
case 1:
printf("输入结点个数:");
scanf("%d", &n);
getchar();
printf("输入先序遍历的结果:");
gets(pre);
printf("输入中序遍历的结果:");
gets(in);
mytree = pre_in_CreateBinTree(pre, in, n);
printf("后序遍历的结果:");
pos_order(mytree);
printf("\n");
break;
case 2:
printf("输入结点个数:");
scanf("%d", &n);
getchar();
printf("输入中序遍历的结果:");
gets(in);
printf("输入后序遍历的结果:");
gets(post);
mytree = in_post_CreateBinTree(in, post, n);
printf("后序遍历的结果");
pre_order(mytree);
printf("\n");
break;
}
return 0;
}
struct BinTree_node *create_bintree(void)
{
unsigned char flag;
struct BinTree_node *tree;
tree = (struct BinTree_node *)malloc(sizeof(struct BinTree_node));
printf("Please input the node elem:\n");
while((tree->elem = getchar()) == '\n');
printf("Do you want to insert l_tree for %c, (Y/N)?\n", tree->elem);
while((flag = getchar()) == '\n');
if(flag == 'Y')
tree->ltree = create_bintree();
else
tree->ltree = NULL;
printf("Do you want to insert r_tree for %c, (Y/N)?\n", tree->elem);
while((flag = getchar()) == '\n');
if(flag == 'Y')
tree->rtree = create_bintree();
else
tree->rtree = NULL;
return tree;
}
void pre_order(struct BinTree_node *tree)
{
if(tree)
{
printf("%c", tree->elem);
pre_order(tree->ltree);
pre_order(tree->rtree);
}
}
void in_order(struct BinTree_node *tree)
{
if(tree)
{
in_order(tree->ltree);
printf("%c", tree->elem);
in_order(tree->rtree);
}
}
void pos_order(struct BinTree_node *tree)
{
if(tree)
{
pos_order(tree->ltree);
pos_order(tree->rtree);
printf("%c", tree->elem);
}
}
struct BinTree_node *pre_in_CreateBinTree(char *pre, char *in, int len)
{
struct BinTree_node *tree;
if(len == 0)
return NULL;
char ch = pre[0];
int index = 0;
while(in[index] != ch)
index++;
tree = (struct BinTree_node *)malloc(sizeof(struct BinTree_node));
tree->elem = ch;
tree->ltree = pre_in_CreateBinTree(pre+1, in, index);
tree->rtree = pre_in_CreateBinTree(pre+index+1, in+index+1, len-index-1);
return tree;
}
struct BinTree_node *in_post_CreateBinTree(char *in, char *post, int len)
{
struct BinTree_node *tree;
if(len == 0)
return NULL;
char ch = post[len-1];
int index = 0;
while(in[index] != ch)
index++;
tree = (struct BinTree_node *)malloc(sizeof(struct BinTree_node));
tree->elem = ch;
tree->ltree = in_post_CreateBinTree(in, post, index);
tree->rtree = in_post_CreateBinTree(in+index+1, post+index, len-index-1);
return tree;
}