- 人工智能之数学基础:矩阵的范数
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵算法线性代数范数
本文重点在前面课程中,我们学习了向量的范数,在矩阵中也有范数,本文来学习一下。矩阵的范数对于分析线性映射函数的特性有重要的作用。矩阵范数的本质矩阵范数是一种映射,它将一个矩阵映射到一个非负实数。矩阵的范数前面我们学习了向量的范数,只有当满足几个条件的时候,此时才可以,那么矩阵也是一样的,当满足下面的条件的时候,才可以定义||A||为矩阵A的范数矩阵范数的性质连续性矩阵范数是连续的函数。即如果矩阵序
- 基于Geopandas的地理空间数据可视化与分析方法研究
一键难忘
信息可视化Geopandaspython
地理空间数据可视化是数据科学中重要的应用之一。通过有效地展示地理信息,我们能够深入理解空间数据的分布和模式。Python的Geopandas库为地理空间数据处理和可视化提供了强大的支持,它基于pandas并集成了shapely、fiona等多个库,能够方便地进行地理数据的读取、处理和展示。本文将介绍如何使用Geopandas进行地理空间数据可视化,示范数据处理的基本流程,并通过具体的代码实例,深入
- 神经网络模型压缩&实例教程—非结构化剪枝
程序先锋
《python深度学习》笔记神经网络剪枝深度学习
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)3.1随机剪枝weight3.2L1范数剪枝bias4.总结最先进的深度学习技术依赖于难以部署的过度参数化模型。相反,已知生物神经网络使用高效的稀疏连接。为了在不牺牲准确性的情况下减少内存、电池和硬件消耗,通过减少模型中的参数数量来确定压缩模型的最佳技术是很重要的。这反过来又允许您在设备上部署轻量级模型,并通过设备上的私
- 【数学基础】线性代数#1向量和矩阵初步
-一杯为品-
数学线性代数矩阵
本系列内容介绍:主要参考资料:《深度学习》[美]伊恩·古德菲洛等著《机器人数学基础》吴福朝张铃著文章为自学笔记,仅供参考。目录标量、向量、矩阵和张量矩阵运算单位矩阵和逆矩阵线性相关和生成子空间范数特殊类型的矩阵和向量特征分解奇异值分解Moore-Penrose伪逆迹运算行列式标量、向量、矩阵和张量标量标量是一个单独的数。向量向量是一列有序排列的数:x=[x1x2⋮xn]\boldsymbolx=\
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- 十种处理权重矩阵的方法及数学公式
阳光明媚大男孩
矩阵机器学习线性代数
1.权重归一化(WeightNormalization)目的:通过分离权重向量的范数和方向来加速训练。公式:对于权重向量w\mathbf{w}w,归一化后的权重w′\mathbf{w}'w′为:w′=w∥w∥\mathbf{w}'=\frac{\mathbf{w}}{\|\mathbf{w}\|}w′=∥w∥w其中∥w∥\|\mathbf{w}\|∥w∥是w\mathbf{w}w的欧几里得范数。2
- 深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
chljerry_mouse
线性代数深度学习机器学习
前面大概有2年时间,利用业余时间断断续续写了一个机器学习方法系列,和深度学习方法系列,还有一个三十分钟理解系列(一些趣味知识);新的一年开始了,今年给自己定的学习目标——以补齐基础理论为重点,研究一些基础课题;同时逐步继续写上述三个系列的文章。最近越来越多的研究工作聚焦研究多层神经网络的原理,本质,我相信深度学习并不是无法掌控的“炼金术”,而是真真实实有理论保证的理论体系;本篇打算摘录整理一些最最
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 矩阵理论与应用:矩阵范数
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
矩阵理论与应用:矩阵范数1.背景介绍1.1问题的由来矩阵范数在数学、工程、物理以及计算机科学等多个领域都有着广泛的应用。它提供了一种衡量矩阵大小或者矩阵变换的影响程度的方法。矩阵范数的概念对于理解矩阵的性质、数值稳定性、以及在机器学习和信号处理中的矩阵操作至关重要。例如,在数值线性代数中,矩阵范数用于评估算法的收敛性、误差估计和稳定性。在信号处理中,它可以用来评估信号的失真程度或者噪声的影响。1.
- 【漫话机器学习系列】101.特征选择法之Lasso(Lasso For Feature Selection)
IT古董
漫话机器学习系列专辑机器学习人工智能
Lasso特征选择法详解1.Lasso回归简介Lasso(LeastAbsoluteShrinkageandSelectionOperator,最小绝对收缩和选择算子)是一种基于L1范数正则化的线性回归方法。它不仅能够提高模型的泛化能力,还可以自动进行特征选择,即将一些不重要的特征的系数收缩到0,从而减少模型的复杂度。2.Lasso回归的数学公式Lasso回归的目标函数如下:其中:是输入数据,w是
- Matlab 点云移动最小二乘法(MLS)
大鱼BIGFISH
点云数据处理matlab最小二乘法点云移动最小二乘法(MLS)
文章目录一、简介二、实现代码三、实现效果参考文献一、简介我们要明白MLS是想用一组基函数来局部近似我们的目标函数,它非常类似于我们所学的泰勒公式,只不过它是基于局部的。这里我们以一维的MLS为例,其具体的原理如下所述:假设Ω为范数向量空间,而u为Ω内场变量的标量。为了形成一个近似函数uau^au
- day_11_java高级编程_泛型_通配符 (560~574)
yangsen116291
java开发语言后端
泛型泛型:标签:将元素类型设置为参数–>泛型相当于预先规定了当前集合存储的数据类型,再使用当前集合时,自动规范数据类型。泛型只能是类,不能是基本数据类型,此类可以是任意类,不一定是包装类,没指定默认为Object当使用泛型后,重写compateTo和compare方法时不再需要(Obiectoinstanceof指定类)再强转了因为集合中的类型已经规定了,不符合的添加不到集合中,所以直接rentu
- 如何解决RNN梯度爆炸和弥散的问题
路野yue
机器学习人工智能
1.梯度裁剪(GradientClipping):用于防止梯度爆炸。在每次参数更新之前,计算梯度的范数,如果超过某个阈值,则将梯度缩放到这个阈值。这种方法可以防止梯度在反向传播过程中变得过大。2.使用ReLU激活函数:相比于tanh或sigmoid,ReLU激活函数(及其变种如LeakyReLU)在正区间内梯度恒定,这有助于缓解梯度爆炸问题。但需要注意的是,ReLU也可能导致神经元死亡的问题。3.
- 供应链协作中的文件安全风险,企业如何防范数据泄露?
够快云库
企业数据安全企业文件安全
2025年,全球供应链正加速数字化转型,大量企业通过云平台、协作工具与供应商共享订单、合同、设计文件等关键数据。然而,超过65%的企业在与供应商协作时遭遇过数据泄露问题,供应链成为企业文件安全的“短板”。典型案例:2025年2月,一家全球知名汽车制造商在与外包厂商共享电池供应链数据时,因安全协议漏洞,导致核心设计方案外泄,竞争对手迅速推出相似产品,直接造成3亿美元的损失。在供应链协作过程中,企业机
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- 零碎的知识点(九):|| 。||是什么?
墨绿色的摆渡人
零碎知识点机器学习人工智能
||。||是什么?∥⋅∥22\|\cdot\|_2^2∥⋅∥22是向量或矩阵的欧几里得范数(Euclideannorm)的平方。1.什么是欧几里得范数?对于向量v=[v1,v2,…,vn]T\mathbf{v}=[v_1,v_2,\dots,v_n]^Tv=[v1,v2,…,vn]T,其欧几里得范数定义为:∥v∥2=v12+v22+⋯+vn2.\|\mathbf{v}\|_2=\sqrt{v_1^
- C语言4--数组
大坑躲不过,远路绕不开
C语言c语言
数组C语言为了解决存储多个同类型的数据问题,设计了数组数组分配了多个连续的同类型的存储空间1.数组声明语法数组元素类型数组名[数组元素个数];数组元素类型代表数组中的元素都属于该类型一个数组只有一个名字,叫数组名,数组名可以代表整个数组数组名本身记录的是数组中第一个元素的地址(整个数组的首地址)数组名属于标识符,遵循标识符的规范数组名不能被复制数组元素个数应该是整数常量2.数组的访问数组中每个元素
- 向量和矩阵的范数
釉色清风
数学矩阵线性代数
一般,实数的绝对值来表示“实数”的大小;复数的模来表示复数的大小。这在实际应用中,带来了非常大的便利。对于一个平面向量aaa,当其在直角坐标系中的分量分别为x0x_0x0和y0y_0y0时,我们常用x02+y02\sqrt{x_0^2+y_0^2}x02+y02来表示其大小。同样,对于三维空间向量bbb,当其在坐标系中的分量分别为x1、y1x_1、y_1x1、y1和z1z_1z1时,我们常用x12
- 【原创】大数据治理入门(6)《数据标准与元数据管理:构建大数据治理的基石》入门必看 高赞实用
精通代码大仙
数据库hadooppython大数据数据库python数据挖掘
数据标准与元数据管理引言:数据标准的重要性在大数据治理中,数据标准的制定和元数据管理是确保数据质量、一致性和可追溯性的关键环节。数据标准可以规范数据的采集、存储和处理流程,而元数据管理则可以帮助企业更好地理解和管理其数据资源。本文将详细探讨数据标准的重要性、元数据的概念及其管理方法,并分享企业实践案例。元数据的概念:什么是元数据定义:元数据(Metadata)是指描述数据的数据,它提供了关于数据的
- L2正则线性回归(岭回归)
一壶浊酒..
深度学习回归线性回归
岭回归数据的特征比样本点还多,非满秩矩阵在求逆时会出现问题岭回归即我们所说的L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和简单说来,岭回归就是在普通线性回归的基础上引入单位矩阵。回归系数的计算公式变形如下岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过
- 论数据治理的价值:解锁数字时代的核心竞争力
ShiTuanWang
java大数据人工智能数据提取数据挖掘数据治理
在数字化转型浪潮席卷全球的今天,数据已成为企业最宝贵的资产之一,其重要性不亚于传统的资本、人力和技术。然而,随着数据量的爆炸性增长和来源的多样化,如何有效管理、利用和保护这些数据,成为了摆在企业面前的重要课题。数据治理,作为一套系统化的管理框架,其价值日益凸显,成为企业解锁数字时代核心竞争力的关键。一、提升数据质量,奠定决策基石数据治理的首要价值在于提升数据质量。通过制定统一的数据标准、规范数据采
- pytorch torch.norm函数介绍
qq_27390023
pytorch人工智能python
torch.norm函数用于计算张量的范数(norm),可以理解为张量的“长度”或“大小”。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算向量和矩阵的多种范数,如L1范数、L2范数、无穷范数等。1.函数签名torch.norm(input,p='fro',dim=None,keepdim=False,dtype=None,out=None)input:需要计算范数的输入张量。p:范数
- 利用全核范数去噪技术优化彩色图像处理
潦草通信狗
人工智能深度学习
一、引言图像去噪是图像处理领域中一个经典且重要的问题。随着技术的发展,各种算法不断涌现,其中全变分(TotalVariation,TV)方法因其在边缘保持方面的优势而广受欢迎。本文将介绍一种基于全核范数(TotalNuclearNorm,TNN)的去噪技术,该技术在处理彩色图像时表现出色。二、算法原理全核范数去噪技术基于全变分理论,通过最小化包含数据保真项和正则项的目标函数来实现去噪。数据保真项确
- 第二届协同经济理论创新叙述研讨会
你说我叫啥
北京邮电大学-闫强《国际视角下的数字经济的发展》总结要点1.主要包括数字经济的测度、规则、内容2.特征:包容、灵活、协同提高用户覆盖面提高公民的使用数字化经济的素养规范数字经济的发展政府数字经济商业模式的创新网络信用或者数字信用企业、政府、个人大大的使用数字服务、ICT服务,未来数字经济将大行其道开篇提出在国际上怎么样讲好中国方案,怎么样去寻找共同的话语体系,在国际的对话空间上,在数字经济上大家是
- 2023-03-11
牵手到永远
为什么需要在元宇宙中规范数字身份?在互联网上,大多数人没有属于自己的数字身份相反,他们将有关自己的信息存入网站或应用程席,然后该网站或应用程序可以通过多种方式使用这些数据,其中一种方式是将其资产化的能力.如果用户想跨越多个数字平台和元宇宙,就其数字身份而言,而不是作为其他各方持有的信息片段,那么他们将需要一个属于自己的独特数字身份从某种意义上说,这种身份已经存在,即能够使用另一个网站(如Faceb
- 24.8.24学习心得
kkkkk021106
学习
x.grad.zero_()y=x.sum()y.backward()x.gradtensor([1.,1.,1.,1.])因为y是x中所有元素的总和,所以x的每个元素对y的贡献都是相等的,因此每个元素的梯度都是1。u=y.detach()detach()方法用于从计算图中分离出一个张量,使其不再跟踪历史,这样就不会在反向传播时影响u。范数(Norm)是一个数学概念,在不同的领域有不同的应用,比如
- 【机器学习】3. 欧式距离,曼哈顿距离,Minkowski距离,加权欧式距离
pen-ai
机器学习机器学习人工智能深度学习pythonscikit-learn
Euclidean-L2normL2范数D(A,B)=(a1−b1)2+(a2−b2)2+...D(A,B)=\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+...}D(A,B)=(a1−b1)2+(a2−b2)2+...ManhattanD(A,B)=∣a1−b1∣+∣a2−b2∣+...D(A,B)=\sqrt{|a_1-b_1|+|a_2-b_2|+...}D(A,B)=∣a1−
- 第2章 线性代数
His Last Bow
#深度学习线性代数机器学习深度学习人工智能算法
目录1.标量、向量、矩阵和张量2.矩阵和向量相乘3.单位矩阵和逆矩阵4.线性相关和生成子空间5.范数6.特殊类型的矩阵和向量7.特征分解8.奇异值分解9.Moore-Penrose伪逆10.迹运算11.行列式1.标量、向量、矩阵和张量标量(scalar):数向量(vector):一列数x=[x1x2...xn]x=\begin{bmatrix}x_1\\x_2\\.\\.\\.\\x_n\end{
- 数据库设计
数据库mysql
数据库表设计设计思路a.进行需求分析,梳理业务流程,识别业务实体,明确数据库表的功能和目标。b.确定各个实体的属性,建立各实体之间的关系,包括一对一,一对多,多对多等等。c.尽量遵循数据库三范式(列不可分割,属性完全依赖主键,属性之间不相互依赖)进行具体的设计。适当时候可以反范式设计,比如通过个别冗余的字段来减少联表查询,以空间换时间。设计准则1.命名规范数据库表名、字段名、索引名需要命名规范,一
- 数值计算·第二集:矩阵的条件数(Matlab版)
J@u1
数值优化数值计算
条件数的倒数:rcond(A):A为矩阵,rcond(A)为A的1范数的条件数的倒数的估计值。如果A的条件数越好,那么其值在1.0附近;反之,则在无穷小附近。%%矩阵的条件数A=[11,2,3,4;7,-2,-3,-4;0.1,0.2,0.3,0.5;5,7,8,9];%1范数的条件数Ac1=cond(A,1);%2范数的条件数Ac2=cond(A,2);%无穷范数的条件数Acw=cond(A,i
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23