估分:0 + 0 + 10 + 10 + 2 + 15 + 10 + 8 + 10 + 0 = 65
成绩:全国二等奖中上
笔者估自己的分一直很准,至于这次比赛:
经历与经验
笔者是一名退役的ACM同学,总共参加了三场蓝桥杯国赛,成绩依次是十一届CB国二、十二届CA国三、十三届CA国二。由于欠缺一点实力和运气,在ACM赛事上没取得什么成绩,但是自认为有些比赛经历和经验。蓝桥杯有很多地方确实做的不好,该骂还得骂,然后不可否认的是,它给很多比上不足(ACM区域赛)、或者压根没有参加算法竞赛(ACM省赛)的同学提供了一个更大众、更适合的比赛平台。对于蓝桥杯,要想取得满意的成绩,我认为最重要的是细心。虽然这个词看似是一个在哪都通吃的话术,但是对于蓝桥杯尤为重要:
认真对待。这是笔者吃过很多亏才明白的道理,当你想做好一件事的时候,或者说,当这件事做不好你会留有遗憾的时候,那就应该用谦卑的态度去做好这件事。比如蓝桥杯,我记得C/C++组必须要return 0,这在参赛手册上写得很清楚,但仍然每年都有很多同学犯这种低级错误。还有今年是在新的平台比赛,编程题提交框中,Ctrl+A不是快捷键,有不少同学修改代码没有覆盖之前提交的代码(这更多是平台的问题),这种问题其实也可以通过花一两分钟简单地检查一遍避免。
相比于其他比赛,细心在蓝桥杯上也体现得更为重要。比如ACM比赛、力扣周赛,错误提交会有罚时,在参加ACM比赛的时候,笔者和队友也都保持谨慎的态度,有时候写完了代码必须反复测试才敢提交,生怕返回错误。但是ACM比赛错误了还能继续提交,只是花费时间更多而已(当然,并不是说时间不重要,很多时候解题数一样,需要依靠花费时间更少来获奖),而蓝桥杯,一旦犯了低级错误(笔者在这次省赛中,青蛙那题因为写错一句代码,导致整题都挂了),导致的结果很可能是整道题差不多直接挂了。一种推荐的解决办法:程序对拍,不了解对拍的同学可以参考以上文章或者自行上网搜索,不再赘述。也正是省赛的低级错误,让我坚定了国赛一定要写对拍的决心,因此国赛虽然写出来的题目也不多,但是基本上都能保证正确。
比赛策略。一、题目难度不保证梯度上升。也就是说后面的题可能比前面的简单,那遇到卡题的情况,果然地选择跳过,换其他题目可能是制胜的关键。二、有部分得分。比如这次国赛的H题替换字符,暴力解法就有8分,这不比前面的RMQ、最短路什么的简单多了?一道题的数据范围直接决定了解题方法和题目难度。所以在最后一小时,一定要保证把所有题的小数据分拿到,它们真的很简单。
真诚地希望能够帮助到后来人
——2022.07.08
C(28,14)*错排
错排可以容斥或者递推
1286583532342313400
代码如下:
#include
using namespace std;
const int N = 16;
long long dp[N];
int main() {
long long ans = 1;
int ct = 2;
for (int i = 15; i <= 28; i++) {
ans = ans * i;
while (ans % ct == 0 && ct <= 14)
ans /= ct, ct++;
}
dp[2] = 1, dp[3] = 2;
for (int i = 3; i <= 14; i++)
dp[i] = 1ll * (i - 1) * (dp[i - 1] + dp[i - 2]);
cout << ans * dp[14] << endl;
return 0;
}
康托展开,注意是循环排列。
预计得分:100%
模拟即可
代码如下:
#include
using namespace std;
const int N = 1e5 + 5;
const long long mod = 1e9 + 7;
string str;
void solve()
{
int n;
scanf("%d", &n);
getchar();
long long ans = 0;
for (int i = 1; i <= n; i++)
{
getline(cin, str);
string TP = "";
int m = str.size();
bool f = 0;
for (int i = 0; i < m; i++)
{
if (!f)
{
TP += str[i];
if (TP == "int" || TP == "long" || TP == "String")
f = 1;
continue;
}
if (TP == "String")
{
bool flag = 0;
for (int j = i; j < m; j++)
{
if (!flag)
{
if (str[j] == '\"')
flag = 1;
continue;
}
if (str[j] == '\"')
{
flag = 0;
continue;
}
ans++;
}
break;
}
if (str[i] == '[')
{
bool flag = 0;
long long res;
for (int j = i + 2; j < m; j++)
{
if (!flag)
{
if (str[j] == '[')
flag = 1, res = 0;
continue;
}
if (str[j] == ']')
{
flag = 0;
ans += res * (TP == "int" ? 4 : 8);
continue;
}
res = res * 10 + str[j] - '0';
}
break;
}
for (int j = i; j < m; j++)
{
if (str[j] == ',' || str[j] == ';')
ans += (TP == "int" ? 4 : 8);
}
break;
}
}
long long B = ans % 1024;
long long KB = ans / 1024 % 1024;
long long MB = ans / 1024 / 1024 % 1024;
long long GB = ans / 1024 / 1024 / 1024 % 1024;
if (GB)
printf("%lldGB", GB);
if (MB)
printf("%lldMB", MB);
if (KB)
printf("%lldKB", KB);
if (B)
printf("%lldB\n", B);
}
int main()
{
solve();
return 0;
}
/*
1
long[] nums=new long[131072];
4
int a=0,b=0;
long x=0,y=0;
String s1=?? hello??,s2=??world??;
long[] arr1=new long[100000],arr2=new long[100000];
*/
预计得分:100%
如果数组中已经有 1 1 1,那么直接用 1 1 1平铺即可。
否则找出最小区间满足区间 G C D = 1 GCD=1 GCD=1,用这个 1 1 1进行平铺。
寻找方法可以使用二分+RMQ。
代码如下:
#include
using namespace std;
const int N = 1e5 + 5;
const long long mod = 1e9 + 7;
const long long INF = 0x3f3f3f3f;
int a[N];
struct node
{
int l, r, g;
} tr[N << 2];
void pushup(int k)
{
tr[k].g = __gcd(tr[k * 2].g, tr[k * 2 + 1].g);
}
void build(int k, int l, int r)
{
tr[k].l = l, tr[k].r = r;
if (l == r)
{
tr[k].g = a[l];
return;
}
int mid = l + r >> 1;
build(k * 2, l, mid);
build(k * 2 + 1, mid + 1, r);
pushup(k);
}
int query(int k, int L, int R)
{
if (tr[k].l == L && tr[k].r == R)
{
return tr[k].g;
}
int mid = (tr[k].l + tr[k].r) >> 1;
if (R <= mid)
return query(k * 2, L, R);
else if (L > mid)
return query(k * 2 + 1, L, R);
else
return __gcd(query(k * 2, L, mid), query(k * 2 + 1, mid + 1, R));
}
void solve()
{
int n;
scanf("%d", &n);
int ct = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
ct += a[i] == 1;
}
if (ct) //有1直接平铺
{
printf("%d\n", n - ct);
return;
}
build(1, 1, n);
if (query(1, 1, n) != 1) //肯定不行
{
puts("-1");
return;
}
int min_step = INF;
for (int i = 1; i <= n; i++)
{
int l = i + 1, r = n, res = INF;
while (l <= r)
{
int mid = l + r >> 1;
if (query(1, i, mid) == 1)
{
res = mid - i;
r = mid - 1;
}
else
l = mid + 1;
}
min_step = min(min_step, res);
}
printf("%d\n", min_step + n - 1);
}
int main()
{
solve();
return 0;
}
/*
3
4 6 9
5
6 4 6 10 5
*/
预计得分:10%
应该是个DP,刚开始没什么思路,后面也没时间想了,交了暴力。
代码如下:
#include
using namespace std;
const int N = 1e6 + 5;
int ans = 0;
string s[N];
int ct = 0;
int func()
{
int r = 0;
for (int i = 1; i <= 1e3; i++)
{
random_shuffle(s + 1, s + 1 + ct);
string tmp;
for (int i = 1; i <= ct; i++)
tmp += s[i];
int n = tmp.size();
int res = 0;
for (int i = 2; i < n; i++)
res += tmp[i - 2] == 'o' && tmp[i - 1] == 'w' && tmp[i] == 'o';
r = max(r, res);
}
return r;
}
void solve()
{
srand(time(NULL));
int n;
cin >> n;
for (int i = 1; i <= n; i++)
{
string str;
cin >> str;
if (str[0] != 'o' && str[0] != 'w' && str[(int)str.size() - 1] != 'o' && str[(int)str.size() - 1] != 'w') //剪枝
{
printf("%d\n", ans);
continue;
}
else
{
s[++ct] = str;
ans = func();
printf("%d\n", ans);
}
}
}
int main()
{
solve();
return 0;
}
预计得分:100%
比较简单的一个题,二分+FLOYD求最短路。时间复杂度 n 3 l o g m n^3logm n3logm,其中m为把所有路径清理到下限的所需天数(开个 1 e 8 、 1 e 9 1e8、1e9 1e8、1e9都行)。
代码如下:
#include
using namespace std;
const int N = 105;
const long long mod = 1e9+7;
const int INF= 0x3f3f3f3f;
int w[N][N];
int ww[N][N];
int minn[N][N];
int n , q;
int check(int day)
{
int ans =0 ;
for(int i =0; i<n; i++)
for(int j =0; j<n; j++)
ww[i][j]=w[i][j];
for(int i =0; i<n; i++)
{
int val = day/n+(day%n>=i+1?1:0);
for(int j =0 ; j<n; j++)
ww[i][j]-=val,ww[j][i]-=val;
}
for(int i =0; i<n; i++)
for(int j =0 ; j<n; j++)
ww[i][j]=max(minn[i][j],ww[i][j]);
for(int k =0 ; k<n; k++)
for(int i =0 ; i<n; i++)
for(int j =0 ; j<n; j++)
ww[i][j]=min(ww[i][j],ww[i][k]+ww[k][j]);
for(int i =0; i<n; i++)
for(int j =0; j<n; j++)
ans+=ww[i][j];
return ans ;
}
void solve()
{
scanf("%d %d",&n,&q);
for(int i =0; i<n; i++)
for(int j =0 ; j<n; j++)
scanf("%d",&w[i][j]);
for(int i =0; i<n; i++)
for(int j =0 ; j<n; j++)
scanf("%d",&minn[i][j]);
int l =0,r= 100000*n,ans =-1;
while(l<=r)
{
int mid = l+r>>1;
if(check(mid)<=q)
{
r= mid -1;
ans = mid;
}
else
l=mid+1;
}
cout<<ans<<endl;
}
int main()
{
solve();
return 0;
}
预计得分:30%
数学废物,没思路,交了暴力。
代码如下:
#include
using namespace std;
const int N = 5005;
const long long mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
bool f[N];
int prime[N];
int ct;
void init()
{
f[0] = f[1] = 1;
for (int i = 2; i < N; i++)
if (!f[i])
{
prime[++ct] = i;
for (int j = i + i; j < N; j += i)
f[j] = 1;
}
}
void solve()
{
init();
int n;
cin >> n;
for (int x = 2; x <= n; x++)
{
for (int p1 = 1; p1 <= ct && prime[p1] < x; p1++)
{
int xx = x;
int a = prime[p1];
if (x % a)
xx = (xx / a + 1) * a;
if (xx > n) //剪枝
continue;
for (int p2 = 1; p2 <= ct && prime[p2] < xx; p2++)
{
a = prime[p2];
int xxx = xx;
if (xx % a)
xxx = (xx / a + 1) * a;
if (xxx == n)
{
cout << x << endl;
return;
}
}
}
}
puts("-1");
}
int main()
{
solve();
return 0;
}
预计得分:40%
感觉需要神奇的数据结构来维护,并不会,交了暴力。
#include
using namespace std;
const int N = 1e5 + 5;
const long long mod = 1e9 + 7;
const long long INF = 0x3f3f3f3f;
char s[N];
int l, r;
char a[3], b[3];
void solve()
{
scanf("%s", s + 1);
int n = strlen(s + 1);
int m;
scanf("%d", &m);
while (m--)
{
scanf("%d %d %s %s", &l, &r, a, b);
for (int i = l; i <= r; i++)
if (s[i] == a[0])
s[i] = b[0];
}
printf("%s", s + 1);
}
int main()
{
solve();
return 0;
}
预计得分:40%
单独维护每个三角形, 类似于分块的思想,边界单独维护一下。
时间复杂度: n m l o g n l o g n nmlognlogn nmlognlogn
代码如下:
#include
using namespace std;
const int N = 2e5 + 5;
const long long mod = 1e9 + 7;
const long long INF = 0x3f3f3f3f;
struct tri
{
int typ, len, l, r;
} a[N];
long long pre[N]; //前缀列数量之和
int n, m;
long long cal2(int len, int h) //计算边长为len的三角形 高度<=h的贡献
{
long long sum = 1ll * len * (len + 1) / 2;
long long len2 = max(0, len - h);
long long res = 1ll * len2 * (len2 + 1) / 2;
return sum - res;
}
long long cal(int col, int idx, int h) //计算 第idx个三角形,从第col列开始, 高度<=h的贡献
{
if (col > a[idx].r)
return 0;
if (a[idx].typ == 0)
{
long long s1 = cal2(a[idx].len, h);
long long len2 = col - a[idx].l;
long long s2 = cal2(len2, h);
return s1 - s2;
}
else
{
long long len2 = a[idx].r - col + 1;
return cal2(len2, h);
}
}
int check(int l, int r, int h)
{
int left_idx = lower_bound(pre + 1, pre + 1 + n, l) - pre;
int right_idx = lower_bound(pre + 1, pre + 1 + n, r) - pre;
if (left_idx == right_idx) //只有一个三角形
return cal(l, left_idx, h) - cal(r + 1, left_idx, h);
else
{
long long ans = 0;
ans += cal(l, left_idx, h);
ans += cal(a[right_idx].l, right_idx, h) - cal(r + 1, right_idx, h);
for (int i = left_idx + 1; i < right_idx; i++) //计算中间的三角形贡献
ans += cal(a[i].l, i, h);
return ans;
}
}
void solve()
{
scanf("%d %d", &n, &m);
int max_h = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d %d", &a[i].len, &a[i].typ);
pre[i] = pre[i - 1] + a[i].len;
a[i].l = pre[i - 1] + 1;
a[i].r = pre[i];
max_h = max(max_h, a[i].len);
}
for (int i = 1; i <= m; i++)
{
int L, R, v;
scanf("%d %d %d", &L, &R, &v);
int l = 1, r = max_h, h = -1;
while (l <= r)
{
int mid = l + r >> 1;
if (check(L, R, mid) >= v)
{
h = mid;
r = mid - 1;
}
else
l = mid + 1;
}
printf("%d\n", h);
}
}
int main()
{
solve();
return 0;
}
树的最大匹配的定义?