闵可夫斯基不等式

向量范数形式

∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p \Vert \boldsymbol{x} \Vert_p =(\sum_{i=1}^{n}\left|x_i\right|^p)^{\frac{1}{p}} xp=(i=1nxip)p1

p>=1

p ≥ 1 p\ge 1 p1,则
∥ x + y ∥ p ≤ ∥ x ∥ p + ∥ y ∥ p \Vert \boldsymbol{x}+\boldsymbol{y} \Vert_p \le \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p x+ypxp+yp
其实等价于证明p范数是一个向量范数

证明:
p = 1 p=1 p=1时,由三角不等式,显然成立
p > 1 p>1 p>1
q = p p − 1 > 1 q=\frac{p}{p-1}>1 q=p1p>1
∑ i = 1 n ∣ x i + y i ∣ p = ∑ i = 1 n ∣ x i + y i ∣ ∣ x i + y i ∣ p − 1 ≤ ∑ i = 1 n ( ∣ x i ∣ + ∣ y i ∣ ) ∣ x i + y i ∣ p − 1 = ∑ i = 1 n ∣ x i ∣ ∣ x i + y i ∣ p − 1 + ∑ i = 1 n ∣ y i ∣ ∣ x i + y i ∣ p − 1 ≤ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ( ∑ i = 1 n ∣ x i + y i ∣ ( p − 1 ) q ) 1 q + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ( ∑ i = 1 n ∣ x i + y i ∣ ( p − 1 ) q ) 1 q = ( ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ) ( ∑ i = 1 n ∣ x i + y i ∣ p ) 1 q = ( ∥ x ∥ p + ∥ y ∥ p ) ( ∑ i = 1 n ∣ x i + y i ∣ p ) 1 q \begin{aligned} &\quad \sum_{i=1}^{n}\left|x_i+y_i \right|^p\\ &=\sum_{i=1}^{n}\left|x_i+y_i\right| \left|x_i+y_i\right|^{p-1}\\ &\le \sum_{i=1}^{n}(\left|x_i\right|+\left|y_i\right|) \left|x_i+y_i\right|^{p-1}\\ &= \sum_{i=1}^{n}\left|x_i\right| \left|x_i+y_i\right|^{p-1}+\sum_{i=1}^{n}\left|y_i\right| \left|x_i+y_i\right|^{p-1}\\ &\le (\sum_{i=1}^{n} \left|x_i \right|^p)^{\frac{1}{p}}(\sum_{i=1}^{n} \left|x_i +y_i\right|^{(p-1)q})^{\frac{1}{q}}\\ &\quad + (\sum_{i=1}^{n} \left|y_i \right|^p)^{\frac{1}{p}}(\sum_{i=1}^{n} \left|x_i +y_i\right|^{(p-1)q})^{\frac{1}{q}}\\ &=((\sum_{i=1}^{n} \left|x_i \right|^p)^{\frac{1}{p}}+(\sum_{i=1}^{n} \left|y_i \right|^p)^{\frac{1}{p}})(\sum_{i=1}^{n} \left|x_i +y_i\right|^{p})^{\frac{1}{q}}\\ &=( \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p)(\sum_{i=1}^{n} \left|x_i +y_i\right|^{p})^{\frac{1}{q}} \end{aligned} i=1nxi+yip=i=1nxi+yixi+yip1i=1n(xi+yi)xi+yip1=i=1nxixi+yip1+i=1nyixi+yip1(i=1nxip)p1(i=1nxi+yi(p1)q)q1+(i=1nyip)p1(i=1nxi+yi(p1)q)q1=((i=1nxip)p1+(i=1nyip)p1)(i=1nxi+yip)q1=(xp+yp)(i=1nxi+yip)q1
其中最后一个小于等于号用的Holder不等式

观察首尾
⇒ ∥ x + y ∥ p ≤ ∥ x ∥ p + ∥ y ∥ p \Rightarrow \Vert \boldsymbol{x}+\boldsymbol{y} \Vert_p \le \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p x+ypxp+yp

0

p ≥ 1 , x i , y i > 0 p\ge 1,x_i,y_i>0 p1,xi,yi>0,则
∥ x + y ∥ p ≥ ∥ x ∥ p + ∥ y ∥ p \Vert \boldsymbol{x}+\boldsymbol{y} \Vert_p \ge \Vert \boldsymbol{x} \Vert_p +\Vert \boldsymbol{y} \Vert_p x+ypxp+yp
f ( x ) = x p f(x)=x^p f(x)=xp
f ′ ′ ( x ) = p ( p − 1 ) x p − 2 < 0 f''(x)=p(p-1)x^{p-2}<0 f(x)=p(p1)xp2<0
由Jensen不等式
∑ i = 1 n ( x i + y i ) p = ∑ i = 1 n ( t x i t + ( 1 − t ) y i 1 − t ) p ≥ t ∑ i = 1 n ( ( x i t ) p + ( 1 − t ) ∑ i = 1 n ( y i 1 − t ) p ) = t 1 − p ∑ i = 1 n x i p + ( 1 − t ) 1 − p ∑ i = 1 n y i p = t 1 − p ∥ x ∥ p p + ( 1 − t ) 1 − p ∥ y ∥ p p = ( ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ) 1 − p ∥ x ∥ p p + ( 1 − ∥ x ∥ p ∥ x ∥ p + ∥ y ∥ p ) 1 − p ∥ y ∥ p p = ( ∥ x ∥ p + ∥ y ∥ p ) p \begin{aligned} \sum_{i=1}^{n}(x_i+y_i)^p &= \sum_{i=1}^{n}(t\frac{x_i}{t}+(1-t)\frac{y_i}{1-t})^p\\ &\ge t\sum_{i=1}^{n}((\frac{x_i}{t})^p+(1-t)\sum_{i=1}^{n}(\frac{y_i}{1-t})^p)\\ &= t^{1-p}\sum_{i=1}^{n}x_i^p+(1-t)^{1-p}\sum_{i=1}^{n}y_i^p\\ &=t^{1-p}\Vert \boldsymbol{x}\Vert_p^p +(1-t)^{1-p}\Vert \boldsymbol{y}\Vert_p^p\\ &=(\frac{\Vert \boldsymbol{x}\Vert_p}{\Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p})^{1-p}\Vert \boldsymbol{x}\Vert_p^p \\&\quad +(1-\frac{\Vert \boldsymbol{x}\Vert_p}{\Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p})^{1-p}\Vert \boldsymbol{y}\Vert_p^p\\ &=(\Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p)^p \end{aligned} i=1n(xi+yi)p=i=1n(ttxi+(1t)1tyi)pti=1n((txi)p+(1t)i=1n(1tyi)p)=t1pi=1nxip+(1t)1pi=1nyip=t1pxpp+(1t)1pypp=(xp+ypxp)1pxpp+(1xp+ypxp)1pypp=(xp+yp)p
⇒ ∥ x + y ∥ p ≥ ∥ x ∥ p + ∥ y ∥ p \Rightarrow \Vert \boldsymbol{x+y}\Vert_p\ge \Vert \boldsymbol{x}\Vert_p+\Vert \boldsymbol{y}\Vert_p x+ypxp+yp

你可能感兴趣的:(数学,数学)