数据结构--线段树

线段树

  • 每个节点表示一个区间内相应的信息。
  • 叶子节点只存一个元素(区间为1)。
  • 线段树不是完全二叉树,也不是满二叉树。
  • 线段树是平衡二叉树(最大深度与最小深度差距不会超过1,堆也是平衡二叉树,logn)。
  • 一般不考虑向线段树中添加和删除元素,且固定区间。
  • 可将其看做一个节点可以为空的满二叉树(特殊的完全二叉树),可用数组表示。
  • 用数组表示线段树应开辟4倍空间。
    对于满二叉树:有(2^h - 1) 个节点,大约2^h。 最后一层(叶子节点)的节点数是2^(h-1) 约等于前面所有层节点之和。
    所以如果线段树是区间有n个元素(叶子节点为n),当n = 2^h,只需要开辟2n的空间足以存全部节点。如果n= 2^k + 1, 最后一层只有少数几个叶子节点,则需要开辟4n的空间节点(将其视其余叶子节点为空的满二叉树)。
满二叉树
线段树
节点视为空

代码示例 创建线段树

public class SegmentTree {
    private E[] tree;
    private E[] data;
    private Merger merger;

    public SegmentTree(E[] arr, Merger merger){
        this.merger = merger;
        data = (E[])new Object[arr.length];
        for (int i = 0; i < arr.length; i++) {
            data[i] = arr[i];
        }
        tree = (E[])new Object[arr.length * 4];
        buildSegmentTree(0, 0 , data.length - 1);
    }

    public int getSize(){
        return data.length;
    }

    public E get(int index){
        if (index < 0 || index >= data.length)
            throw new IllegalArgumentException("Index is illegal");
        return data[index];
    }

    private int leftChild(int index){
        return 2*index + 1;
    }

    private int rightChild(int index){
        return 2*index + 2;
    }
    

    // 在treeIndex的位置创建区间为[l...r]的线段树
    private void buildSegmentTree(int treeIndex, int l, int r){
        if (l == r){
            tree[treeIndex] = data[l];
            return;
        }

        int mid = l + (r - l) /2;
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        buildSegmentTree(leftTreeIndex, l, mid);
        buildSegmentTree(rightTreeIndex, mid + 1, r);

        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
    }
 }

查询

    //返回区间[queryL, queryR]的值
    public E query(int queryL, int queryR){
        if (queryL >= data.length || queryL < 0 || queryR >= data.length || queryR < 0 || queryL > queryR)
            throw new IllegalArgumentException("Index is illegal.");
        return query(0, 0,data.length - 1, queryL, queryR);
    }

    private E query(int treeIndex, int l, int r, int queryL, int queryR) {
        if (l == queryL && r == queryR)
            return tree[treeIndex];

        int mid = l + (r - l) / 2;

        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        if (queryR <= mid) {
            return query(leftTreeIndex, l, mid, queryL, queryR);
        } else if (queryL >= mid + 1) {
            return query(rightTreeIndex, mid + 1, r, queryL, queryR);
        }
        E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
        E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);

        return merger.merge(leftResult, rightResult);
    }

更新

    //更新
    public void set(int index, E e){
        if (index < 0 || index > data.length)
            throw new IllegalArgumentException("Illegal index");
        data[index] = e;
        set(0, 0, data.length - 1, index, e);
    }

    //在以treeIndex为根的线段树中更新index的值为e;
    private void set(int treeIndex, int l, int r, int index, E e){

        if (l == r) {
            tree[treeIndex] = e;
            return;
        }

        int mid = l + (r - l)/2;
        int leftTreeIndex = leftChild(treeIndex);
        int rightTreeIndex = rightChild(treeIndex);

        if (index <= mid){
            set(leftTreeIndex, 0, mid, index, e);
        } else {
            set(rightTreeIndex, mid + 1, r, index, e);
        }
        tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]);
    }

时间复杂度

时间复杂度为:O(logn)
相关题目:LeetCode 303 区域与检索

你可能感兴趣的:(数据结构--线段树)