给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'
题目是找到矩阵中 “岛屿的数量” ,因此上下左右相连的’1’都被认为是同一个连续的岛屿。
1.主循环:遍历整个矩阵,当遇到 grid[i][j] == ‘1’ 时,从此点开始做深度优先搜索 dfs,岛屿数 count + 1 且在深度优先搜索中删除此岛屿。
2.bfs方法:借用一个队列queue,将未越界且为字符’1’的节点 (i, j)加入队列:
具体实现代码如下:
class Solution {
public:
void bfs(vector<vector<char>>& grid,int i,int j,int cow,int col) {
queue<vector<int>> curQue;
curQue.emplace(vector<int>{i,j});
while(!curQue.empty()) {
auto curNode = curQue.front();
curQue.pop();
int m=curNode[0],n=curNode[1];
if(m-1>=0 && grid[m-1][n] == '1') {
grid[m-1][n] = '0';
curQue.emplace(vector<int>{m-1,n});
}
if(m+1<cow && grid[m+1][n] == '1') {
grid[m+1][n] = '0';
curQue.emplace(vector<int>{m+1,n});
}
if(n-1>=0 && grid[m][n-1] == '1') {
grid[m][n-1] = '0';
curQue.emplace(vector<int>{m,n-1});
}
if(n+1<col && grid[m][n+1] == '1') {
grid[m][n+1] = '0';
curQue.emplace(vector<int>{m,n+1});
}
}
}
int numIslands(vector<vector<char>>& grid) {
int count=0,cow=grid.size(),col=grid[0].size();
for(int i=0;i<cow;++i) {
for(int j=0;j<col;++j) {
if('1' == grid[i][j]) {
grid[i][j] = '0';
bfs(grid,i,j,cow,col);
++count;
}
}
}
return count;
}
};
1.主循环:遍历整个矩阵,当遇到 grid[i][j] == ‘1’ 时,从此点开始做深度优先搜索 dfs,岛屿数 count + 1 且在深度优先搜索中删除此岛屿。
2.dfs方法: 设目前指针指向一个岛屿中的某一点 (i, j),寻找包括此点的岛屿边界。
具体实现代码如下:
class Solution {
public:
void dfs(vector<vector<char>>& grid,int i,int j) {
if(i<0 || i>=grid.size() || j<0 || j>=grid[i].size() || grid[i][j]=='0' ) return;
grid[i][j]='0';
dfs(grid,i,j-1);
dfs(grid,i,j+1);
dfs(grid,i-1,j);
dfs(grid,i+1,j);
}
int numIslands(vector<vector<char>>& grid) {
int nr = grid.size();
if (nr == 0) return 0;
int nc = grid[0].size();
int count=0;
for(int i=0;i<nr;++i) {
for(int j=0;j<nc;++j) {
if('1' == grid[i][j]) {
dfs(grid,i,j);
++count;
}
}
}
return count;
}
};