- 今天这道题看了好久的题解,才理解意思,看来有的时候刷题也要积累一些知识。
suohanfjiusbis
pythonleetcode算法
classSolution:defgameOfLife(self,board:List[List[int]])->None:"""Donotreturnanything,modifyboardin-placeinstead."""importnumpyasnpr,c=len(board),len(board[0])board_exp=np.array([[0for_inrange(c+2)]for
- 【数据挖掘】NumPy的索引与切片(Indexing & Slicing)
dundunmm
机器学习数据挖掘pythonnumpy数据挖掘机器学习
NumPyndarray的索引与切片(Indexing&Slicing)NumPy提供灵活高效的索引与切片方式,支持一维、二维、多维数组的访问与操作。1️⃣索引(Indexing)索引用于访问NumPy数组中的单个元素。一维数组索引importnumpyasnparr=np.array([10,20,30,40,50])print(arr[0])#访问第1个元素->10print(arr[-1])
- python中的“@”与“*”运算符
汤姆_布利柏
pythonnumpy
1、@运算符@运算符是对矩阵进行矩阵乘法(即数学上的矩阵相乘)来用的。1.1、二维方阵生成二维矩阵a和b:importnumpyasnpa=np.arange(1,10).reshape(3,3)print(a)print(a.shape)print(type(a))print(a.dtype)[[123][456][789]](3,3)int32b=np.array(np.arange(0,9)
- Python 中@ 矩阵乘法运算符详细讲解
Charonrise
python矩阵开发语言
在Python中,@是矩阵乘法运算符,它用于矩阵与矩阵之间的乘法运算,也可以用于矩阵与向量之间的乘法。它是在Python3.5中引入的,用来专门处理线性代数中的矩阵乘法运算。1.基本用法@运算符的作用等价于numpy中的np.dot()或np.matmul()函数。例如:importnumpyasnp#定义两个矩阵A=np.array([[1,2],[3,4]])B=np.array([[5,6]
- 55、深度学习-自学之路-自己搭建深度学习框架-16、使用LSTM解决RNN梯度消失和梯度爆炸的问题,重写莎士比亚风格文章。
小宇爱
深度学习-自学之路深度学习rnn人工智能自然语言处理神经网络
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 各类路径规划算法python 代码
许卿768503
python算法开发语言
一、人工势场法#初始化参数设置importnumpyasnpimportmatplotlib.pyplotaspltimportcopyfromcelluloidimportCamera#保存动图时用,pipinstallcelluloid%matplotlibqt5##初始化车的参数d=3.5#道路标准宽度W=1.8#汽车宽度L=4.7#车长P0=np.array([0,-d/2,1,1])#车
- pytorch基础-比较矩阵是否相等
yuweififi
pytorch人工智能
1、使用NumPy库NumPy是Python中用于科学计算的常用库,它提供了array_equal和allclose函数来判断矩阵是否相等。array_equal用于精确比较,allclose用于考虑一定误差范围的近似比较,适合浮点数矩阵。importnumpyasnp#创建示例矩阵matrix_a=np.array([[1,2,3],[4,5,6]])matrix_b=np.array([[1,
- 自用python基础2
ffuanc
python基础python
二、数组的存储和处理——NumPy模块2.1创建数组多维数组array(object,dtype=None,copy=True,order=None,subok=False,ndmin=0)importnumpyasnpa=np.array([1,2,3,4])b=np.array([[1,2,3],[4,5,6],[7,8,9]])print(a)print(b)运行结果:[1234][[123
- python 基本用法
选与握
#pythonpython人工智能开发语言
1[None]importnumpyasnp#创建一个示例数组img_pre=np.array([[1,2,3],[4,5,6]])#使用...进行索引result=img_pre[...][None]print("原始数组形状:",img_pre.shape)print("操作后数组形状:",result.shape)代码解释...操作符:...(省略号)在NumPy中是一个特殊的索引对象,它表
- 53、深度学习-自学之路-自己搭建深度学习框架-14、使用自己的架构搭建一个通过学习模仿莎士比亚风格的2000次的文章。并且在关键层配有详细解释。
小宇爱
深度学习-自学之路深度学习人工智能神经网络自然语言处理rnn
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 50、深度学习-自学之路-自己搭建深度学习框架-11、添加RNN递归神经网络层为了浮现RNN的神经网络使用框架。
小宇爱
深度学习-自学之路深度学习人工智能自然语言处理神经网络rnn
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 52、深度学习-自学之路-自己搭建深度学习框架-13、对话预测功能,使用我们自己建的架构重写RNN预测网络,程序的详细解读。
小宇爱
深度学习-自学之路深度学习人工智能神经网络自然语言处理rnn
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 37、深度学习-自学之路-自己搭建深度学习框架-2、自动梯度计算
小宇爱
深度学习-自学之路深度学习人工智能自然语言处理
importnumpyasnpclassTensor(object):'''importnumpyasnp:导入numpy库,用于处理数组相关操作。classTensor(object):定义了一个名为Tensor的类,继承自object。__init__方法是类的构造函数,用于初始化Tensor对象:self.data=np.array(data):将传入的data转换为numpy数组并存储在s
- 51、深度学习-自学之路-自己搭建深度学习框架-12、使用我们自己建的架构重写RNN预测网络
小宇爱
深度学习-自学之路深度学习rnn人工智能
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 44、深度学习-自学之路-自己搭建深度学习框架-6、自动优化,就是把原来的权重更新的部分用面向对象的方式再写一次
小宇爱
深度学习-自学之路深度学习人工智能
importnumpyasnpnp.random.seed(1)data=np.array([[0,0],[0,1],[1,0],[1,1]])target=np.array([[0],[1],[0],[1]])#weights_0_1=np.random.rand(2,3)#weights_1_2=np.random.rand(3,1)weights_0_1=np.array([[0.1,0.2
- python数据分析一周速成2.数据计算
噼里啪啦噼酷啪Q
python数据分析CDA
python数据分析一周速成2.数据计算一、按列聚合计算(常用函数,五星推荐describe一键多维展示)importnumpyasnpimportpandasaspdd=np.array([[1,12,13,15,16],[23,28,24,215,26],[370,39,355,325,3],[47,49,45,42,482],[571,519,5,52,57],[61,69,
- 使用Python matplotlib绘制第一个图表
大数据张老师
pythonmatplotlib开发语言
下面的代码展示了如何使用matplotlib来绘制一个简单的图表。我们将一步步地讲解每一行代码的功能,帮助学生理解整个过程。importnumpyasnpimportmatplotlib.pyplotasplt#准备数据data=np.array([1,2,3,4,5])#创建代表画布的Figure类的对象figfig=plt.figure()#在画布fig上添加坐标系风格的绘图区域axax=fi
- 符号学习初学代码——从开普勒第三定律到万有引力定律
Merci美滋滋
学习python机器学习
备注PINN——physicsinformedneuralnetworkSR——symbolicregression代码详细分析见评论区链接一、SR_testimportnumpyasnpT=np.array([0.241,0.615,1,1.881,11.862]).reshape(-1,1)R=np.array([0.381,0.723,1,1.524,5.023]).reshape(-1,1
- 【python自用函数】负数向下取整,正数向上取整
一只小白跳起来
Python常用函数python开发语言pycharm经验分享笔记numpy
1.最终结果array=np.array([[1.2,-1.2],[2.5,-2.5]])expanded_array=expand(array)print(expanded_array)[[2.-2.][3.-3.]]2.取整知识2.1.向上取整取大于或等于给定数的最小整数importmath#示例number=4.1result=math.ceil(number)print(result)#输
- 26、深度学习-自学之路-NLP自然语言处理-理解加程序,怎么把现实的词翻译给机器识别。
小宇爱
深度学习-自学之路深度学习自然语言处理人工智能
一、怎么能让机器能够理解我们的语言呢,我们可以利用神经网络干很多的事情,那么我们是不是也可以用神经元做自然语言处理呢,现在很多的实际应用已经说明了这个问题,可以这么做。那我们考虑一下该怎么做,首先我们应该把我们现实中的每一个单词都用一个词向量来进行表示:importnumpyasnponehots={}onehots['cat']=np.array([1,0,0,0])onehots['the']
- 深度学习入门2:自然语言处理(第一章 神经网络的复习/代码+总结)
m0_58598898
深度学习自然语言处理神经网络
1.1数学和python的复习1.1.1向量和矩阵总结:代码实现:D:\py\pythonProject\0自学\LM\第一章\1向量和矩阵.pyimportnumpyasnpx=np.array([1,2,3])print(x.__class__)#输出类名np.ndarray类print(x.shape)#np.ndarray类实例变量shape和ndimshape表示多维数组的形状print
- python实现线性规划 数学建模 代替matlab
Leowner
python数学建模python数学建模
要解决的问题如图所示importnumpyasnpfromscipyimportoptimizez=np.array([2,3,1])a=np.array([
- python PNG图片显示
网罗开发
python集Python技术汇总python图片
此方法只适用于显示png格式的图片首先引入包importmatplotlib.pyplotasplt#plt用于显示图片importmatplotlib.imageasmpimg#mpimg用于读取图片显示图片代码:lena=mpimg.imread('myself.png')#读取和代码处于同一目录下的lena.png#此时lena就已经是一个np.array了,可以对它进行任意处理lena.s
- np.astype()函数
TheMountainGhost
python
astype函数用于array中数值类型转换Examplex=np.array([1,2,2.5])x.astype(int)输出array([1,2,2])Examplearr=np.arange((10))print(arr,arr.dtype,sep="\n")[0123456789]int32#可以看到,他的数据类型为int32arr=arr.astype("float32")print(
- python中plt.plot()_python plt.plot()绘图
weixin_39953356
推荐用电脑绘图,如果是安卓手机,推荐应用汇--pydroid.#本文的命令都要调用的包包,#此外再次强调for条件要加冒号:回车后循环体要加四个空格importnumpyasnpimportmatplotlib.pyplotasplt一.plt.plot()参数篇#marker大全x=np.array([-1,0,1])y=np.array([-1,0,2])mk=.,ov^1234sp*hH+x
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
sirius12345123
pytorch逻辑回归人工智能
importtorchimportnumpyasnpimporttorch.nnasnnfromtorch.utils.dataimportDataLoader,TensorDatasetdata=np.array([[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.
- 机器学习day8
ኈ ቼ ዽ
机器学习numpypython
自定义数据集,使用朴素贝叶斯对其进行分类代码importnumpyasnpimportmatplotlib.pyplotaspltclass1_points=np.array([[2.1,2.2],[2.4,2.5],[2.2,2.0],[2.0,2.1],[2.3,2.3],[2.6,2.4],[2.5,2.1]])class2_points=np.array([[4.0,3.5],[4.2,3
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
sirius12345123
分类numpypython
importnumpyasnpimportmatplotlib.pyplotaspltclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[1.7,3.3
- dataframe新增方式
Alex_b_fpiety
python
一、新增列的三种方法1.准备数据引入需用的包,并新建DataFrame例子in[1]:importpandasaspdimportnumpyasnpin[2]:data=pd.DataFrame(np.array([[1,2,3],[4,5,6],[7,8,9]]),columns=['a','b','c'])in[3]:dataout[3]:abc0123145627892.insert方法使用
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
sirius12345123
scikit-learn均值算法
importmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansimportnumpyasnpclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[-1.9,1
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的