- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- Java的垃圾回收机制详解——从入门到出土,学不会接着来砍我!
我心向阳iu
#JVMJava面试知识点精讲javajvm算法
文章目录哪些内存需要回收回收堆:垃圾的定义引用计数算法:可达性分析算法:GCRoots的对象回收方法区:垃圾的定义如何回收垃圾垃圾回收算法总结标记—清除算法(适用老年代,但是基本废弃了)标记—复制算法(现在新生代普遍用的)标记—整理算法(现在老年代普遍用的)JVMGC的种类GC的触发机制年轻代GC(MinorGC)触发机制老年代GC(MajorGC/FullGC)触发机制FullGC触发机制为什么
- 代码随想录-算法训练营day30(回溯算法06:重新安排行程,N皇后,数独,回溯算法总结)
java菜鸡加油
算法
第七章回溯算法part06●332.重新安排行程●51.N皇后●37.解数独●总结详细布置今天这三道题都非常难,那么这么难的题,为啥一天做三道?因为一刷也不求大家能把这么难的问题解决,所以大家一刷的时候,就了解一下题目的要求,了解一下解题思路,不求能直接写出代码,先大概熟悉一下这些题,二刷的时候,随着对回溯算法的深入理解,再去解决如下三题。大家今天的任务,其实是对回溯算法章节做一个总结就行。重点是
- 机器学习里的逻辑回归Logistic Regression基本原理与应用
硅基创想家
AI-人工智能与大模型机器学习逻辑回归人工智能
LogisticRegression即逻辑回归,是一种广泛应用于机器学习和数据挖掘领域的有监督学习算法,以下从原理、应用、算法优缺点等方面进行介绍:基本原理线性回归基础:逻辑回归基于线性回归模型,其基本形式为:z=w1x1+w2x2+⋯+wnxn+bz=w_1x_1+w_2x_2+\cdots+w_nx_n+bz=w1x1+w2x2+⋯+wnxn+b其中xix_ixi是特征变量,wiw_iwi是对
- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- 机器学习·逻辑回归
AAA顶置摸鱼
python深度学习机器学习逻辑回归人工智能
前言逻辑回归虽然名称中有“回归”,但实际上用于分类问题。基于线性回归的模型,通过使用逻辑函数(如Sigmoid函数)将线性组合的结果映射到0到1之间的概率值,用于表示属于某个类别的可能性。一、逻辑回归vs线性回归特性逻辑回归线性回归任务类型分类(二分类为主)回归(预测连续值)输出范围(0,1)(概率值)(-∞,+∞)核心函数Sigmoid函数线性函数损失函数对数损失函数(交叉熵)均方误差(MSE)
- 零基础入门机器学习 -- 第三章第一个机器学习模型——线性回归
山海青风
#机器学习人工智能机器学习回归线性回归python
3.1线性回归的概念在现实生活中,许多事情都遵循某种线性关系,比如:房价vs面积:房子的面积越大,价格通常越高。工资vs工作经验:工作经验越多,薪资往往更高。汽车油耗vs车速:在一定范围内,车速越快,油耗可能越高。线性回归(LinearRegression)是机器学习中最基础的算法之一,它用于研究两个变量之间的线性关系,即一个变量(自变量)如何影响另一个变量(因变量)。3.2线性回归的数学直觉线性
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 线性回归、逻辑回归及SVM
@迷途小书童
机器学习
1,回归(LinearRegression)回归其实就是对已知公式的未知参数进行估计。可以简单的理解为:在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值(对于多个参数要枚举它们的不同组合),直到找到那个最符合样本点分布的参数(或参数组合)。当然,实际运算有一些优化算法,肯定不会去枚举的。注意,回归的前提是公式已知,否则回归无法进行。回归中的公式基本都是数据分
- 算法02-各种排序算法
mengyoufengyu
算法python算法排序算法python
各种常见排序算法总结一.冒泡排序(BubbleSort)冒泡排序是一种简单的排序算法。它重复地遍历要排序的列表,比较相邻的元素,并交换它们的位置,直到整个列表排序完成。A、说明:特点:通过不断交换相邻元素,将最大(或最小)的元素“冒泡”到数组的一端。优点:实现简单,代码容易理解。对于小规模数据表现较好。缺点:时间复杂度较高,不适合大规模数据。交换操作较多,效率低。时间复杂度:最好情况:O(n)(已
- 【机器学习】嘿马机器学习(算法篇)第6篇:线性回归,学习目标【附代码文档】...
广江鹏
算法机器学习线性回归学习人工智能
本教程的知识点为:机器学习算法定位、K-近邻算法1.4k值的选择1K值选择说明1.6案例:鸢尾花种类预测–数据集介绍1案例:鸢尾花种类预测1.8案例:鸢尾花种类预测—流程实现1再识K-近邻算法API1.11案例2:预测facebook签到位置1项目描述线性回归2.3数学:求导1常见函数的导数线性回归2.5梯度下降方法介绍1详解梯度下降算法线性回归2.6线性回归api再介绍小结线性回归2.9正则化线
- 机器学习(入门3)
caspesjpe
机器学习python逻辑回归算法
机器学习(入门3有监督学习算法之回归算法)4回归算法4.1线性回归:利用函数对一个或多个特征值和目标值之间关系进行建模分析的方式回归问题:目标值------连续性函数公式:h(W)=w1x1+w2x1+w3x3+…+b一般用矩阵形式表示4.1.1线性模型:自变量一次;参数一次(自变量高次方,非线性函数)y=w1x1+w2x2^2+…+b4.1.2线性回归的损失和优化[目标:求模型参数]损失函数co
- SPSS多元回归得到的VIF值要怎么看每个变量都有一个VIF值怎么判断多重共线性
xiamu_CDA
python
SPSS多元回归中的VIF值解读与多重共线性的判断当你在使用SPSS进行多元线性回归分析时,面对复杂的统计结果,可能会遇到一个问题:如何通过查看每一个解释变量的方差膨胀因子(VarianceInflationFactor,VIF)来判断是否存在多重共线性?这不仅是理论上的探讨,更是实际数据处理过程中不可或缺的一环。今天,我们就一起来揭开VIF值背后的秘密。什么是VIF值?方差膨胀因子(VIF)是用
- R语言机器学习与临床预测模型77--机器学习预测常用R语言包
武昌库里写JAVA
面试题汇总与解析springlog4jjava开发语言算法
R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01预测模型常用R包常见回归分析包:rpart包含有分类回归树的方法;earth包可以实现多元自适应样条回归;mgev包含广义加性模型回归;Rweka包中的MSP函数可用于回归。pls包中的plsr函数实现偏最小二乘和主成分回归。stats包中的ppr函数实现投影寻踪分析,同时包括线性回归的方
- 深度学习笔记——pytorch构造数据集 Dataset and Dataloader
旺仔喔喔糖
机器学习笔记pytorch人工智能深度学习
系列文章目录机器学习笔记——梯度下降、反向传播机器学习笔记——用pytorch实现线性回归机器学习笔记——pytorch实现逻辑斯蒂回归Logisticregression机器学习笔记——多层线性(回归)模型Multilevel(LinearRegression)Model深度学习笔记——pytorch构造数据集DatasetandDataloader深度学习笔记——pytorch解决多分类问题M
- 【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
若北辰
人工智能信息可视化人工智能matplotlib
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章机器学习入门:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级】第4章用Python实现逻辑回归:从数据到模型【人工智能-初级】第5章支持向量机(SVM):原理解析与代码实现【人工智能-初级】第6章决策树和随机森林:浅显易懂的介绍及Python实践【人工智能-
- 从零开始人工智能Matlab案例-线性回归与梯度下降算法
算法工程师y
人工智能算法matlab
案例背景假设某饮料公司想预测气温变化对饮料销量的影响。使用线性回归模型拟合历史数据,并通过梯度下降算法优化模型参数,动态展示参数更新如何逐步降低预测误差。算法原理Matlab实现与动态可视化1.生成带噪声的线性数据rng(42);%固定随机种子x=0:0.5:20;%温度(℃)y=2.5*x+10+8*randn(size(x));%销量(添加高斯噪声)%可视化数据figure;scatter(x
- 第五节《VTK 点与网格模型求交处理技巧》
《雨声》
VTK技巧笔记开发语言c++qt
使用VTK做项目常常需要用到单点或点集与网格模型求交计算,常用手段是使用vtkOBBTree进行求交计算。我基于VTK提供的算法总结了3种点与网格求交计算的方法,第一种vtkOBBTree直线与网格求交计算;第二种局部网格直线求交计算;第三种基于深度缓存求交计算;第一种vtkOBBTree直线与网格求交计算,vtkOBBTree是用于生成模型OBB树的对象数据结构,它基于模型创建一个有向包围盒,对
- 使用线性回归模型逼近目标模型 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习线性回归pytorch
前一篇文章,计算图ComputeGraph和自动求导Autograd|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started使用线性回归模型逼近目标模型什么是回归什么是线性回归使用PyTorch实现线性回归模型代码执行结果什么是回归在统计学中,回归分析(regressionanalysis)
- 组队学习首次开放许愿啦!下个月想学什么,听你的
datawhale
原创DatawhaleDatawhaleDatawhale学习开源贡献:Datawhale团队许愿你想学习的课程组队学习新增许愿环节,每个人都可以在留言区写下你想学习的内容。许愿规则▶许愿的内容不能太广。举个栗子,不推荐大家直接许愿:「机器学习」,而是许愿:「机器学习入门概念讲解」,或者具体到某个算法:「线性回归的公式推导+代码实战」,这样便于我们在1个月内完成制作。▶不限制课程难度,只要是刚需就
- 4.2 过拟合与欠拟合
望云山190
算法人工智能
4.2.1什么是过拟合与欠拟合过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合,但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)那么是什么原因导致模型复杂?线性回归训练学习的时候编程模型会变得复杂,这里就对应
- DS图(下)(19)
tan180°
DS开发语言c++数据结构后端
文章目录前言一、最短路径的概念二、单源最短路径-Dijkstra算法三、单源最短路径-Bellman-Ford算法四、多源最短路径-Floyd-Warshall算法总结前言 加油,今天就是图的最后一篇了,撑住!! 今天我们要学的就是最短路径问题!!一、最短路径的概念最短路径问题:从带权有向图中的某一顶点出发,找出一条通往另一顶点的最短路径,最短指的是路径各边的权值总和达到最小,最短路径可分为单
- 【单层神经网络】基于MXNet的线性回归实现(底层实现)
辰尘_星启
线性回归mxnet机器学习人工智能深度学习神经网络python
写在前面刚开始先从普通的寻优算法开始,熟悉一下学习训练过程下面将使用梯度下降法寻优,但这大概只能是局部最优,它并不是一个十分优秀的寻优算法整体流程生成训练数据集(实际工程中,需要从实际对象身上采集数据)确定模型及其参数(输入输出个数、阶次,偏置等)确定学习方式(损失函数、优化算法,学习率,训练次数,终止条件等)读取数据集(不同的读取方式会影响最终的训练效果)训练模型完整程序及注释fromIPyth
- 多元线性回归模型:理论、应用与数学建模实例
小柒笔记
数学建模线性回归算法
引言多元线性回归模型是数学建模中的一种重要工具,它用于分析两个或两个以上自变量与一个因变量之间的关系。在许多实际问题中,如经济学、生物统计学、环境科学和社会科学等领域,多元线性回归模型都发挥着关键作用。本文将介绍多元线性回归模型的基本概念、数学表达式及其在数学建模中的应用。一、多元线性回归模型的基本概念1.1定义多元线性回归模型是指包含一个因变量和多个自变量的线性回归模型。数学上,它可以表示为:Y
- 机器学习算法-逻辑回归
Larkin88
机器学习算法逻辑回归
机器学习算法-逻辑回归1.K-近邻算法(略)2.线性回归(略)3.逻辑回归3.1逻辑回归介绍逻辑回归(LogisticRegression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的练习。由于算法的简单和高效,在实际中应用非常广泛。1、逻辑回归的应用场景广告点击率是否为垃圾邮件是否患病金融诈骗虚假账号2逻辑回归的原理2.1输入$$h(w)=w_
- 线性回归模型全攻略:原理、步骤与应用实例
..蓝桉...
线性回归算法回归人工智能机器学习python
基本概念理论:在线性回归中,我们通常有一个或多个自变量(X)和一个因变量(Y)。模型的目标是找到一条最佳拟合直线,使得这条直线能够最好地描述(X)和(Y)之间的关系。这条直线的方程通常表示为:(Y=\beta_0+\beta_1X_1+\beta_2X_2+...+\beta_pX_p+\epsilon)其中,(Y)是因变量(目标变量)(X_1,X_2,...,X_p)是自变量(特征)(\beta
- java调用ONNX模型
jason.zeng@1502207
java开发语言
一、导出一个onnx模型这里训练了一个简单的线性回归模型通过SerializeToString完成导出。fromsklearn.linear_modelimportLinearRegressionimportnumpyasnpimportonnxfromskl2onnximportconvert_sklearnfromskl2onnx.common.data_typesimportFloatTen
- 深度学习实战一:线性回归(基于Pytorch,含数据和详细注释)
若北辰
Python深度学习深度学习线性回归pytorch
线性回归1、回归的概念2、回归的分类3、线性回归4、代码实现补充说明1、回归的概念回归的本来意思是,无论父母的身高多高或多矮,小孩的身高总是趋向于回到均值附近,也就是回归趋向均值!,这就是回归分析的本质2、回归的分类线性回归(又分为一元线性回归和多元线性回归)广义线性回归(又分为逻辑回归和对数回归)非线性回归3、线性回归线性回归是深度学习中最基础、最简单的模型。虽然简单,但是跟大多数监督学习算法的
- 人工智能基础知识速成 - 机器学习、深度学习算法原理及其实际应用案例
苹果酱0567
面试题汇总与解析课程设计springbootvue.jsjavamysql
一、机器学习概念与原理什么是机器学习?机器学习是人工智能的一个分支,通过从数据中学习和改进算法,使计算机系统在没有明确编程的情况下也能够自动地学习和改进。机器学习是一种实现人工智能的技术手段,能够让计算机“自我学习”,从而实现更准确的预测和决策。机器学习的基本原理机器学习的基本原理是通过构建数学模型,使用大量的数据进行训练,使得模型能够智能地预测和决策。在机器学习中,常用的模型包括线性回归、逻辑回
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,