代码随想录算法训练营day53 | 动态规划之子序列 1143.最长公共子序列 1035.不相交的线 53. 最大子序和

day53

      • 1143.最长公共子序列
        • 1.确定dp数组(dp table)以及下标的含义
        • 2.确定递推公式
        • 3.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组
      • 1035.不相交的线
      • 53. 最大子序和
        • 1.确定dp数组(dp table)以及下标的含义
        • 2.确定递推公式
        • 3.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组

1143.最长公共子序列

题目链接
解题思路: 动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

2.确定递推公式

主要就是两大情况: text1[i - 1]text2[j - 1]相同,text1[i - 1]text2[j - 1]不相同

如果text1[i - 1]text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1]text2[j - 1]不相同,那就看看text1[0, i - 2]text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

代码如下:

if (text1[i - 1] == text2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}

3.dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

代码:

vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));

4.确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
代码随想录算法训练营day53 | 动态规划之子序列 1143.最长公共子序列 1035.不相交的线 53. 最大子序和_第1张图片

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

5.举例推导dp数组

以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:
代码随想录算法训练营day53 | 动态规划之子序列 1143.最长公共子序列 1035.不相交的线 53. 最大子序和_第2张图片
最后红框dp[text1.size()][text2.size()]为最终结果

以上分析完毕,C++代码如下:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接
解题思路:
本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度
那么本题就和我们刚刚讲过的上一题就是一样一样的了,代码也是一样的。

class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};


53. 最大子序和

题目链接
**解题思路:**动规五部曲如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

2.确定递推公式

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

根据dp[i]的定义,很明显dp[0]应为nums[0]dp[0] = nums[0]

4.确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下
代码随想录算法训练营day53 | 动态规划之子序列 1143.最长公共子序列 1035.不相交的线 53. 最大子序和_第3张图片

注意最后的结果可不是 dp[nums.size() - 1]! ,而是dp[6]

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]

以上动规五部曲分析完毕,完整代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

你可能感兴趣的:(算法训练营,算法,动态规划,leetcode)