MySQL-索引

MySQL索引详解

索引介绍

索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。

索引用于快速找出在某个列中有一特定值的行。不使用索引,MySQL 必须从第1条记录开始读完整个
表,直到找出相关的行。表越大,查询数据 所花费的时间越多。如果表中查询的列有一个索引,MySQL
能快速到达某 个位置去搜寻数据文件,而不必查看所有数据。索引是对数据库表中一列或多列的值进行
排序的一种结构,使用索引可 提高数据库中特定数据的查询速度。

索引的作用就相当于书的目录。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。

索引底层数据结构存在很多种类型,常见的索引结构有: B 树, B+树 和 Hash、红黑树。在 MySQL 中,无论是 Innodb 还是 MyIsam,都使用了 B+树作为索引结构。

MySQL中 索引的存储类型有两种,即BTREEHASH,具体和表的存储引擎相关; MyISAMInnoDB
存储引擎只支持BTREE索引;MEMORY/HEAP存储引擎 可以支持HASHBTREE索引

索引的优缺点

优点

  • 使用索引可以大大加快 数据的检索速度(大大减少检索的数据量), 这也是创建索引的最主要的原因。
  • 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
  • 在实现数据的参考完整性方面,可以加速表和 表之间的连接。
  • 在使用分组和排序子句进行数据查询时,也可以显著减少查询中 分组和排序的时 间。

缺点

  • 创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
  • 索引需要占磁盘空间,除了数据表占数据空间之外,每一个索引 还要占一定的物理空间,如果有 大量的索引,索引文件可能比数据文件更快 达到最大文件尺寸。
  • 当对表中的数据进行增加、删除 和修改的时候,索引也要动态地 维护,这样就降低了数据的维护速度。

但是,使用索引一定能提高查询性能吗?

大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。

索引的设计原则

索引设计不合理或者缺少索引都会对数据库和应用程序的性能造成障 碍。高效的索引 对于获得良好的性能非常重要

  1. 索引并非越多越好,一个表中 如有大量的索引,不仅占用磁盘空 间,还会影响INSERTDELETEUPDATE等语句的性能,因为在表 中的 数据更改时,索引也会进行调整和更新
  2. 避免对经常更新的表进行过多的索引,并且索引中 的列要尽可能 少。应该经常用于查询的字段创建索引,但要避免添加不必要的字段。
  3. 数据量小的 表最好不要使用索引,由于数据较少,查询花费的时 间可能比遍历索引的时间还要短,索引可能不会产 生优化效果。
  4. 在条件表达式中经常用到的不同值较多的列上建立索引,在不同 值很少的列上不要 建立索引。比如在学生表的“性别”字段上只 有“男”与“女”两个不同值,因此就无须建立索引,如果建立索 引不但不会提 高查询效率,反而会严重降低数据更新速度。
  5. 当唯一性是某种数据本身的特征时, 指定唯一索引。使用唯一索 引需能确保定义的列的数据完整性,以提高查询速度。
  6. 在频繁进行排 序或分组(即进行group byorder by操作)的列上 建立索引,如果待排序的列有多个,可以在这些列 上建立组合索引。

索引分类

按照数据结构维度划分:

  • BTree 索引:MySQL 里默认和最常用的索引类型。只有叶子节点存储 value,非叶子节点只有指针和 key。存储引擎 MyISAM 和 InnoDB 实现 BTree 索引都是使用 B+Tree,但二者实现方式不一样(前面已经介绍了)。
  • 哈希索引:类似键值对的形式,一次即可定位。
  • RTree 索引:一般不会使用,仅支持 geometry 数据类型,优势在于范围查找,效率较低,通常使用搜索引擎如 ElasticSearch 代替。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHARTEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

按照底层存储方式角度划分:

  • 聚簇索引(聚集索引):索引结构和数据一起存放的索引,InnoDB 中的主键索引就属于聚簇索引。
  • 非聚簇索引(非聚集索引):索引结构和数据分开存放的索引,二级索引(辅助索引)就属于非聚簇索引。MySQL 的 MyISAM 引擎,不管主键还是非主键,使用的都是非聚簇索引。

按照应用维度划分:

  • 主键索引:加速查询 + 列值唯一(不可以有 NULL)+ 表中只有一个。
  • 普通索引:仅加速查询。
  • 唯一索引:加速查询 + 列值唯一(可以有 NULL)。
  • 覆盖索引:一个索引包含(或者说覆盖)所有需要查询的字段的值。
  • 联合索引:多列值组成一个索引,专门用于组合搜索,其效率大于索引合并。
  • 全文索引:对文本的内容进行分词,进行搜索。目前只有 CHARVARCHARTEXT 列上可以创建全文索引。一般不会使用,效率较低,通常使用搜索引擎如 ElasticSearch 代替。

MySQL 8.x 中实现的索引新特性:

  • 隐藏索引:也称为不可见索引,不会被优化器使用,但是仍然需要维护,通常会软删除和灰度发布的场景中使用。主键不能设置为隐藏(包括显式设置或隐式设置)。
  • 降序索引:之前的版本就支持通过 desc 来指定索引为降序,但实际上创建的仍然是常规的升序索引。直到 MySQL 8.x 版本才开始真正支持降序索引。另外,在 MySQL 8.x 版本中,不再对 GROUP BY 语句进行隐式排序。
  • 函数索引:从 MySQL 8.0.13 版本开始支持在索引中使用函数或者表达式的值,也就是在索引中可以包含函数或者表达式。

索引的底层数据结构

#Hash 表

哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。

为何能够通过 key 快速取出 value 呢? 原因在于 哈希算法(也叫散列算法)。通过哈希算法,我们可以快速找到 key 对应的 index,找到了 index 也就找到了对应的 value。

hash = hashfunc(key)
index = hash % array_size

MySQL-索引_第1张图片

但是!哈希算法有个 Hash 冲突 问题,也就是说多个不同的 key 最后得到的 index 相同。通常情况下,我们常用的解决办法是 链地址法。链地址法就是将哈希冲突数据存放在链表中。就比如 JDK1.8 之前 HashMap 就是通过链地址法来解决哈希冲突的。不过,JDK1.8 以后HashMap为了减少链表过长的时候搜索时间过长引入了红黑树。

MySQL-索引_第2张图片

为了减少 Hash 冲突的发生,一个好的哈希函数应该“均匀地”将数据分布在整个可能的哈希值集合中。

既然哈希表这么快,为什么 MySQL 没有使用其作为索引的数据结构呢? 主要是因为 Hash 索引不支持顺序和范围查询。假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。并且,每次 IO 只能取一个。

试想一种情况:

SELECT * FROM tb1 WHERE id < 500;

在这种范围查询中,优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。

# B 树& B+树

B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced (平衡)的意思。

目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。

B 树& B+树两者有何异同呢?

  • B 树的所有节点既存放键(key) 也存放 数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
  • B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
  • B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。

在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。(下面的内容整理自《Java 工程师修炼之道》)

MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引(非聚集索引)”。

InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(聚集索引)”,而其余的索引都作为 辅助索引 ,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。

避免索引失效

索引失效也是慢查询的主要原因之一,常见的导致索引失效的情况有下面这些:

  • 使用 SELECT * 进行查询;
  • 创建了组合索引,但查询条件未遵守最左匹配原则;
  • 在索引列上进行计算、函数、类型转换等操作;
  • % 开头的 LIKE 查询比如 like '%abc';
  • 查询条件中使用 or,且 or 的前后条件中有一个列没有索引,涉及的索引都不会被使用到;
  • 发生隐式转换;

你可能感兴趣的:(mysql,数据库,java)