ThreadLocal源码分析

    ThreadLocal的作用就是在线程内部创建一个变量副本,ThreadLocal的思想就是用空间换时间,使各线程都能访问自己的变量副本,ThreadLocal虽然提供了一种解决多线程环境下成员变量的问题,但是它并不是解决多线程环境下共享变量的问题,本文就以ThreadLocal源码为例深入探讨它的结构实现和功能原理。

JDK的文档介绍

This class provides thread-local variables. These variables differ from
their normal counterparts in that each thread that accesses one (via its
{@code get} or {@code set} method) has its own, independently initialized
copy of the variable. {@code ThreadLocal} instances are typically private
static fields in classes that wish to associate state with a thread (e.g.,
a user ID or Transaction ID).

该类提供了线程局部变量,这些变量与普通变量不同,每个线程都可以通过 get 或 set方法来访问自己的变量副本。ThreadLocal 实例通常是类中私有的,它们希望将状态与某一个线程(用户ID或事务ID)相关联,实现线程之间的数据隔离。

ThreadLocal源码剖析

image.png

     每个线程Thread维护一个ThreadLocalMap,而ThreadLocalMap的内部就是以Entry为元素的table数组,Entry就是一个key-value结构,key就是ThreadLocal value为实际存储的值,这里的ThreadLocal和key之间的虚线,是因为Entry是继承WeakReference实现的,当ThreadLocal Ref销毁时,指向堆中ThreadLocal实例的唯一一条强引用消失了,只有Entry有一条指向ThreadLocal实例的弱引用,那么这里的ThreadLocal实例是可以被GC掉的。这时Entry里的key为null,那么直到线程结束前Entry中的value都是无法回收的,这里可能产生内存泄露。

成员变量

//初始容量 —— 必须是2的冥
private static final int INITIAL_CAPACITY = 16;
//存放数据的数组,数组长度必须是2的冥
private Entry[] table;
//数组中元素的个数
private int size = 0;
//进行扩容的阈值
private int threshold;
//设置扩容的阈值大小,使其在最坏情况下保持2/3的负载系数
private void setThreshold(int len) {threshold = len * 2 / 3;}

Entry结构

//Entry继承WeakReference使用弱引用的方式[为了降低内存泄漏发生的概率]
//entry.get() == null表示key不再被引用 ThreadLocal对象可被回收,它的key如果没被强引用会在GC触发的时候回收掉
//我们在使用ThreadLocal的时候,每次用完ThreadLocal都调用remove()方法,清除数据,防止内存泄漏
static class Entry extends WeakReference> {
    /** The value associated with this ThreadLocal. */
    Object value;
    //并且使用ThreadLocal作为key
    Entry(ThreadLocal k, Object v) {
      super(k);
      value = v;
    }
}

set(T value)源码分析

public void set(T value) {
  //获取当前线程
  Thread t = Thread.currentThread();
  //根据当前线程获取ThreadLocalMap[相当于hashMap,真正保存数据的地方]
  ThreadLocalMap map = getMap(t);
  if (map != null)
    //map不为空赋值,并用当前ThreadLocal作为key
    map.set(this, value);
  else
    //成员变量中的ThreadLocalMap还没被创建,则创建ThreadLocalMap,给当前线程使用并保存value
    createMap(t, value);
}

//获取Thread的成员变量threadLocals
ThreadLocalMap getMap(Thread t) {
    //每一个线程都会持有有一个ThreadLocalMap,用来维护线程本地的值
    //threadLocals --> public class Thread implements Runnable的成员属性 
    return t.threadLocals;
}

//调用的是new ThreadLocalMap();
void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

//ThreadLocalMap构造方法
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
    //创建和初始化table容量默认值是16,主要数据结构就是一个Entry数组
    table = new Entry[INITIAL_CAPACITY];
    //计算hash值获取数组下标地址
    int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    //创建Entry,存放第一个数据
    table[i] = new Entry(firstKey, firstValue);
    //记录ThreadLocalMap中的Entry个数
    size = 1;
    //设置扩容阀值,当size到达threashold时需要resize整个ThreadLocalMap
    setThreshold(INITIAL_CAPACITY);
}

//每次创建ThreadLocal都会加HASH_INCREMENT,重新计算threadLocalHashCode值
private final int threadLocalHashCode = nextHashCode();
//使用AtomicInteger保证多线程环境下的同步
private static AtomicInteger nextHashCode = new AtomicInteger();
//魔数的选取是为了让HashCode能够均匀的分布在2的N次方的数组里
private static final int HASH_INCREMENT = 0x61c88647;
//计算ThreadLocal对象的HashCode
 private static int nextHashCode() {
    //每次增加HASH_INCREMENT
    return nextHashCode.getAndAdd(HASH_INCREMENT);
}

//扩容的阀值是容量的2/3,len = 16计算结果等于10
private void setThreshold(int len) {
    threshold = len * 2 / 3;
}

map.set(this, value)源码分析

private void set(ThreadLocal key, Object value) {

    // We don't use a fast path as with get() because it is at
    // least as common to use set() to create new entries as
    // it is to replace existing ones, in which case, a fast
    // path would fail more often than not.
    //初始化table
    Entry[] tab = table;
    //获取tab的长度
    int len = tab.length;
    //快速hash获取下标地址
    int i = key.threadLocalHashCode & (len-1);
    //用线性探测法解决冲突,调用nextIndex(i, len)遍历table
    //循环判断要存放的索引位置是否已经存在 Entry,若存在(tab[i])则进入循环体
    for (Entry e = tab[i];e != null;e = tab[i = nextIndex(i, len)]) {
       //获取ThreadLocal对象,也就是key
       ThreadLocal k = e.get();
       if (k == key) {
            //如果索引位置Entry的key已经存在,重新设置值
            e.value = value;
            return;
        }
        //如果索引位置的 Entry的存在,但是key为null(key已被回收过)
        if (k == null) {
            //更换当前key为null的Entry
            replaceStaleEntry(key, value, i);
            return;
        }
    }
    //存放的索引位置没有Entry,将当前的[key,value]作为一个Entry保存在该位置
    tab[i] = new Entry(key, value);
    //增加ThreadLocalMap中的Entry个数
    int sz = ++size;
    //清理key为null的Entry并判断table中的数量是否超出阈值
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
    //扩容调整table的容量
    rehash();
}

private void replaceStaleEntry(ThreadLocal key, Object value,int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;
    Entry e;
    //默认初始值
    int slotToExpunge = staleSlot;
    //向前遍历找到key为null的位置,记录为slotToExpunge,
    for (int i = prevIndex(staleSlot, len);e = tab[i]) != null;i = prevIndex(i, len))
        if (e.get() == null)
            slotToExpunge = i;

    // Find either the key or trailing null slot of run, whichever occurs first
    //向后遍历,若是key相等,给这个Entry赋新的value值
    for (int i = nextIndex(staleSlot, len);(e = tab[i]) != null;i = nextIndex(i, len)){
        ThreadLocal k = e.get();
        if (k == key) {
            e.value = value;
            //和staleSlot位置的Entry交换
            tab[i] = tab[staleSlot];
            tab[staleSlot] = e;
            // Start expunge at preceding stale entry if it exists
            if (slotToExpunge == staleSlot)
                slotToExpunge = i;
            //调用CleanSomeSlots清理key为null的Entry
            cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
            return;
    }

    if (k == null && slotToExpunge == staleSlot)
        slotToExpunge = i;
    }

    // If key not found, put new entry in stale slot
    //没有Entry的key和传入key相等,就在staleSlot位置新建一个Entry
    tab[staleSlot].value = null;
    tab[staleSlot] = new Entry(key, value);
  
    // If there are any other stale entries in run, expunge them
    if (slotToExpunge != staleSlot)
    //再清理一遍key为null的Entry[为了降低内存泄漏发生的可能]
    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}

//cleanSomeSlots(int i, int n)
//这个方法可能不是清理所有的entry,而是简单快速的清理几个entry
private boolean cleanSomeSlots(int i, int n) {
    boolean removed = false;
    Entry[] tab = table;
    int len = tab.length;
    do {
          ///环形遍历
          i = nextIndex(i, len);
          Entry e = tab[i];
          if (e != null && e.get() == null) {
              n = len;
              removed = true;
              //调用expungeStaleEntry(i)去清理
              i = expungeStaleEntry(i);
          }
    //log2(n)清理次数
    } while ( (n >>>= 1) != 0);
    return removed;
}

//rehash
private void rehash() {
  //清理key为null的Entry
  expungeStaleEntries();

  // Use lower threshold for doubling to avoid hysteresis
  //如果size大于3/4的threshold
  if (size >= threshold - threshold / 4)
    //resize
    resize();
}

//expungeStaleEntries()
private void expungeStaleEntries() {
    Entry[] tab = table;
    int len = tab.length;
    //遍历table,清理key为null的Entry
    for (int j = 0; j < len; j++) {
        Entry e = tab[j];
        if (e != null && e.get() == null)
            expungeStaleEntry(j);
    }
}

//resize()
private void resize() {
    //初始化oldTab
    Entry[] oldTab = table;
    //oldLen长度
    int oldLen = oldTab.length;
    //newLen新长度,扩容为原来的2倍
    int newLen = oldLen * 2;
    //初始化newTab
    Entry[] newTab = new Entry[newLen];
    int count = 0;
    //重新计算存储在扩容后的位置
    for (int j = 0; j < oldLen; ++j) {
        Entry e = oldTab[j];
        if (e != null) {
            ThreadLocal k = e.get();
            if (k == null) {
                //清除key为null的Entry
                e.value = null; // Help the GC
            } else {
                //重新计算key不为null的Entry的hash值
                int h = k.threadLocalHashCode & (newLen - 1);
                while (newTab[h] != null)
                    //线性探测法解决冲突
                    h = nextIndex(h, newLen);
                //entry存储指定位置
                newTab[h] = e;
                count++;
            }
        }
    }
    //更新ThreadLocalMap成员属性
    setThreshold(newLen);
    size = count;
    table = newTab;
}

get()源码分析

public T get() {
    //获取当前线程
    Thread t = Thread.currentThread();
    //获取当前线程的ThreadLocalMap
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        //从当前线程的ThreadLocalMap获取相对应的Entry
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            //获取目标值
            @SuppressWarnings("unchecked")
            T result = (T) e.value;
            return result;
        }
    }
    //调用setInitialValue()方法返回初始值
    return setInitialValue();
}

//getEntry(ThreadLocal key)
private Entry getEntry(ThreadLocal key) {
    //计算指定key的hash值
    int i = key.threadLocalHashCode & (table.length - 1);
    //获取当前位置的Entry
    Entry e = table[i];
    //如果Entry不为null且Entry的key和指定的key相等,返回该Entry
    if (e != null && e.get() == key)
        return e;
    else
    //调用getEntryAfterMiss(ThreadLocal key, int i, Entry e)方法
        return getEntryAfterMiss(key, i, e);
}

//getEntryAfterMiss(ThreadLocal key, int i, Entry e) 
private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
    //初始化tab及长度 
    Entry[] tab = table;
    int len = tab.length;
   //索引位置上的Entry不为null进入循环,否则返回nul
    while (e != null) {
        ThreadLocal k = e.get();
        //如果Entry的key和指定的key相等,则返回该Entry
        if (k == key)
            return e;
        //如果Entry的key为null[key已被回收],清除无效的Entry
        if (k == null)
            expungeStaleEntry(i);
        else
            //获取下一个位置的Entry,循环判断
            i = nextIndex(i, len);
        e = tab[i];
    }
    return null;
}

initialValue()源码分析

private T setInitialValue() {
    //该方法默认返回null,子类可以重写该方法,用于设置ThreadLocal初始值。
    T value = initialValue();
    //获取当前线程
    Thread t = Thread.currentThread();
    //获取当前线程的ThreadLocalMap
    ThreadLocalMap map = getMap(t);
    if (map != null)
        //map不为空赋值,并用当前ThreadLocal作为key
        map.set(this, value);
    else
        //线程中成员变量ThreadLocalMap还没被创建,创建ThreadLocalMap
        createMap(t, value);
    //默认返回null
    return value;
}

remove(ThreadLocal key) 源码分析

private void remove(ThreadLocal key) {
    //初始化table
    Entry[] tab = table;
    //计算table中数量
    int len = tab.length;
    //计算指定key的hash值
    int i = key.threadLocalHashCode & (len-1);
    //遍历table,循环判断索引位置的Entry是否为null
    for (Entry e = tab[i];e != null;e = tab[i = nextIndex(i, len)]) {
        //若Entry的key和指定的key相等,执行删除操作
        if (e.get() == key) {
            //清除Entry的key的引用
            e.clear();
            //清除无效的 Entry
            expungeStaleEntry(i);
            return;
        }
    }
}

//expungeStaleEntry(int staleSlot)
private int expungeStaleEntry(int staleSlot) {
    //tab数组初始化及计算数组长度
    Entry[] tab = table;
    int len = tab.length;
    // expunge entry at staleSlot
    //删除value
    tab[staleSlot].value = null;
    //删除entry
    tab[staleSlot] = null;
    //map的size减1
    size--;

    // Rehash until we encounter null
    Entry e;
    int i;
    //遍历指定删除节点,所有后续节点
    for (i = nextIndex(staleSlot, len);(e = tab[i]) != null;i = nextIndex(i, len)) {
          ThreadLocal k = e.get();
          //key为null,执行删除操作
          if (k == null) {
                e.value = null;
                tab[i] = null;
                size--;
          } else {
                //key不为null,重新计算hash值
                int h = k.threadLocalHashCode & (len - 1);
                //不在同一个位置
                if (h != i) {
                      //老位置的entry置为null
                      tab[i] = null;
                      // Unlike Knuth 6.4 Algorithm R, we must scan until
                      // null because multiple entries could have been stale.
                      //从h开始往后遍历找到entry为空终止遍历,执行插入操作
                      while (tab[h] != null)
                          h = nextIndex(h, len);
                      tab[h] = e;
                }
          }
    }
    return i;
 }
以上为个人对ThreadLocal源码分析的总结。

你可能感兴趣的:(ThreadLocal源码分析)